

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, APRIL 2022

Sixth Semester

CORE - MM6CRT04 - LINEAR ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

02BE78F7

Time: 3 Hours Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. If the hyperbola $x^2 y^2 = 1$ is rotated through 45^0 anticlockwise about the origin, what is the new equation.
- 2. a)Define column rank of a matrix.

b)Find the column rank of matrix.
$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & -1 & 1 \\ 5 & 4 & -2 & 2 \end{bmatrix}$$

- 3. Define a left inverse and right inverse of a matrix
- 4. Prove that $X = \{(x,0) : x \in R\}$ is a subspace of the vector space R^2
- 5. Define a basis of a vector space V and write the canonical bases of R^n .
- 6. Define a bijective linear mapping. Give an example for a linear mapping that is injective but not surjective.
- 7. Define rank and nullity of a linear mapping. Also define Dimension Theorem for finite-dimensional vector spaces over a field *F* in terms of rank and nullity.
- 8. Determine the transition matrix from the ordered basis $\{(1,0,0,1),(0,0,0,1),(1,1,0,0),(0,1,1,0)\}$ of \mathbb{R}^4 to the natural ordered basis of \mathbb{R}^4 .
- 9. Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is meant by index of nilpotency of f.
- 10. Find the eigen values of A = $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & -1 \end{bmatrix}$
- 11. Define eigen value of a linear map and the eigen vector associated with it.
- 12. Define diagonalizable linear map and diagonalizable matrix.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries 5 marks.

13. a)Prove that matrix multiplication is associative.

b)Compute
$$A^2$$
 and A^3 where $A = \begin{bmatrix} 0 & a & a^2 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{bmatrix}$

Page 1/2 Turn Over

14. a)Prove that if the rows
$$x_1, x_2, \dots, x_p$$
 are linearly independent, then none can be zero.
b) Prove that $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & -1 & 1 \\ 5 & 4 & -2 & 2 \end{bmatrix}$ is linearly dependent.

- 15. Prove that $M_{mxn}(R)$ be the set of all mxn matrices is a vector space
- 16. Prove that $P(x) = 2 + x + x^2$, $q(x) = x + 2x^2$, $r(x) = 2 + 2x + 3x^2$ is linearly dependent.
- 17. Define $Im\ f$ and $Ker\ f$ where f is a linear mapping from a vector space to a vector space. Write image and kernel for the differentiation map $D: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$.
- 18. Suppose that the mapping $f:\mathbb{R}^3 o \mathbb{R}^3$ is linear and such that $f(1,0,0)=(2,\,3,\,-2),\quad f(1,1,0)=(4,\,1,\,4),\quad f(1,1,1)=(5,\,1,\,-7).$ Find the matrix of f relative to the natural ordered basis of \mathbb{R}^3 .
- 19. Define similar matrices. Show that if matrices A, B are similar then so are A', B'.
- 20. Determine the eigen values and their algebraic multiplicities of the linear mapping f: $R^3 \rightarrow R^3$ given by $f(x,y,z) = R^3$ (y + z, x + z, x + y)
- For the nXn tridiagonal matrix An = $\begin{vmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots$ 21. $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- a) Reduce the following matrix to Hermite form $\begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 4 & 8 & 4 \\ 3 & 6 & 5 & 7 & 7 \end{bmatrix}$
 - b) Prove that by using elementary row operation, a non-zero matrix can be transformed to a row-echelon matrix.
 - c) Prove that every non-zero matrix A can be transformed to a Hermite matrix by using elementary row operations
- 23. a)Prove that the set W of complex matrices of the form $\begin{bmatrix} \alpha & \beta \\ -\bar{\beta} & -\alpha \end{bmatrix}$ is a real vector space of dimension 4.
 - b) If S is a subset of V then prove that S is a basis if and only if S is a maximal independent subset.
 - c) Let V be a finite dimensional vector space. If W is a subspace of V. Prove that W is of finite dimension and dim W ≤ $\dim V$. If $\dim W = \dim V$ iff W = V
- 24. Define linear mapping from a vector space to a vector space. Check whether $f:\mathbb{R}^3 o \mathbb{R}^3$ given below are
 - a) f(x, y, z) = (x 1, x, y).
 - b) f(x, y, z) = (x + y, z, 0).
- 25. Show that $\{(1,1,1),(1,2,3),(1,1,2)\}$ is a basis of \mathbb{R}^3 . If $f:\mathbb{R}^3\to\mathbb{R}^3$ is linear and such that $f(1,1,1)=(1,1,1), \quad f(1,2,3)=(-1,-2,-3), \quad f(1,1,2)=(2,2,4), ext{ determine } f(x,y,z) ext{ for all } f(x,y,z) ext{$ $(x, y, z) \in \mathbb{R}^3$.

 $(2 \times 15 = 30)$

