

Reg No :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, APRIL 2022

Sixth Semester

CORE - MM6CRT03 - COMPLEX ANALYSIS

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

50414609

Time: 3 Hours Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Show that $\lim_{z \to 0} rac{z}{ar{z}}$
- 2. Find an analytic function with real part x^2y .
- 3. Find the real part of e^{-3z} ?
- 4. Find all the roots of tan z=1
- 5. Evaluate tanh⁻¹(1-i).
- 6. Evaluate $\int_0^{\frac{\pi}{6}} e^{i2t} dt$.
- 7. What is the value of $\int_{|z|=1}(z^2+4)dz$.
- 8. Evaluate $\int_C \frac{e^z}{z-2} dz$, C is the circle |z|=3.
- g. Define the convergence of an infinite series of complex numbers.
- 10. Show that when 0 < |z| < 4, $\frac{1}{4z-z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$
- 11. Define isolated singular points and show that z=0 is not an isolated singular point of Log z.
- 12. Show that the existence of Cauchy Principal Value does not imply the existence of $\int_{\infty}^{-\infty}f(x)dx$

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Page 1/2 Turn Over

Each question carries 5 marks.

- 13. Prove that the composition of two continuous functions is continuous
- 14. Prove that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin , eventhough CR Equations are satisfied at the origin
- 15. Show that $Re[\log{(z-1)}]=rac{1}{2}\ln[(x-1)^2+y^2], z
 eq 1$
- 16. Evaluate $\int_C rac{\sinh z}{\left(2z-z^2
 ight)^2}$ Where C is the circle |z|=1 oriented counterclockwise
- 17. If f(z) is analytic within and on a circle C given by $|z-z_0|=R$ and if $|f(z)|\leq M$ for every z on C,Prove that $|f^n(z_0)|\leq M\frac{n!}{R^n}$
- 18. State and prove maximum modulus principle.
- 19. Find the Maclaurin series expansion of the function $f(z) = \frac{z}{z^4+9}$ and the interval in which the expansion is valid
- 20. Define the essential singular points of a complex function with example. Verify the example with its series representations
- 21. State the characterization of poles of order of $f(z)=rac{z^3+2z}{(z-i)^3}.m$ of a complex function f(z) and the formula for residue at z_0 of the poles of order m. Find the residue at z=i

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. a) State and prove the sufficient condition for a function f(z) to be differentiable.
 - b) Show that the function $f(z) = \ln(|z|) + i \operatorname{Arg}(z)$ is analytic onits domain of definition and $f'(z) = \frac{1}{z}$
- 23. Evaluate $\int_c f(z)dz$, where $f(z)=\exp(\pi\bar{z})$ and C is the boundary of the square with vertices at the points 0, 1, 1+i and i, the orientation of C being in the counter clockwise direction.
- 24. a) Represent the function $f(z)=\frac{z+1}{z-1}$ by its Laurent series in the domain $1<|z|<\infty$ b) Show that for 0<|z-1|<2, $\frac{z}{(z-1)(z-2)}=\frac{-1}{2(z-1)}-3\sum_{n=0}^{\infty}\frac{(z-1)^n}{2^{n+1}}$
- 25. State and prove Cauchy's Residue Theorem. Using the theorem, evaluate $\int_C z^2 e^{(\frac{1}{z})} dz$, where C is the circle |z|=3

 $(2 \times 15 = 30)$

