

QP CODE: 22101058	Reg No	:	
	Name	:	

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, APRIL 2022

Sixth Semester

CORE - MM6CRT02 - GRAPH THEORY AND METRIC SPACES

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

DD4116B4

Time: 3 Hours Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Define a Graph. When will you say that a graph is simple?
- 2. Give two different drawings of K4 which are isomorphic.
- 3. Define complete bipartite graph. Give an example of a complete bipartite graph which is complete.
- 4. Define an edge deleted subgraph.
- 5. Define a spanning tree of a graph G. Draw any two isomorphic spanning trees of K4.
- 6. Define vertex connectivity of a graph. Draw a graph whose vertex connectivity is two.
- 7. Define a tour and an Euler tour of a graph G.
- 8. Define Hamiltonian graph, Draw a graph with Hamiltonian path but no Hamiltonian Cycle.
- 9. Define an open sphere in a metric space X. Give an example.
- 10. Define closed set in a metric space (X,d).
- 11 Define convergence of a sequence in a metric space.
- 12 Define decreasing sequence of sets in a metric space.

 $(10 \times 2 = 20)$

Page 1/3 Turn Over

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. State and prove First Theorem of Graph Theory.
- 14. Define adjacency matrix of a graph. Find the graph whose adjacency matrix is

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 . What can you say about the graph if all the entries of the main diagonal are zero?

- 15. Let T be a tree with at least two vertices and let $P = u_0 u_1 \dots u_n$ be a longest path in T. Then prove that both u_0 and u_n have degree one.
- 16. Let G be graph with n vertices, where $n \ge 2$. Then prove that any connected graph G has at least two vertices which are not cut vertices.
- 17. If G is a simple graph with n vertices, where $n \ge 3$, and the degree $d(v) \ge \frac{n}{2}$ for every vertex v of G, Then prove that G is Hamiltonian.
- 18. Prove that int A is the union of all open balls in A.
- 19. Define Cantor set. Prove that there exist infinitely many points in Cantor set.
- 20. State and prove Cantor's intersection Theorem.
- 21. If a complete metric space is the union of a sequence of its subsets, then prove that the closure of at least one set in the sequence must have non-empty interior.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. State and prove the necessary and sufficient condition for a nonempty graph with atleast two vertices to be bipartite.
- 23. a) Let 'e' be an edge of the graph G and let 'G e' be the sub graph obtained by deleting e. Then prove that $\omega(G) \leq \omega(G-e) \leq \omega(G)+1$.
 - b) If G be a graph with n vertices and q edges. Let $\omega(G)$ denote the number of connected components of G. Then prove that G has at least $n-\omega(G)$ edges.

- 24. Let X be the collection of all bounded real valued functions on [0,1]. Prove that d_1 and d_2 defined below are metrics in X.
 - a) $d_1(x,y) = \|f g\|$, where $\|f\| = \sup\{|f(x)|: x \in [0,1]\}$.
 - b) d₂(x,y) = $\|f-g\|$, where $\|f\|$ = $\int_0^1 |f(x)| dx$
- 25. Let X be a metric space, let Y be a complete metric space and let A be a dense subspace of X. If f is a uniformly continuous mapping of A into Y, then prove that f can be extended uniquely to a uniformly continuous mapping g of X into Y.

(2×15=30)

