

QP CODE: 22101057

Reg No :

Name :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, APRIL 2022 Sixth Semester

CORE - MM6CRT01 - REAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science & B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards

7FF02C27

Time: 3 Hours Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Prove that the signum function is not continuous at 0.
- 2. Let f be defind for all $x \in R, x \neq 2$ by $f(x) = \frac{x^2 + x 6}{x 2}$. Define f at x = 2 in such a way that f is continuous at that point.
- 3. Show that the continuous image of an open interval need not be an open interval.
- 4. Determine whether the function $f(x) = x|x|, \forall x$ is differentiable and find its derivative?
- 5. Given that the function $f:R\to R$ defined by $f(x)=x^5+4x+3$ is invertible and let g be its inverse. Find the value of g'(8) ?
- 6. Prove that a function $f: I \to R$ is decreasing if $f'(x) \le 0, \forall x \in I$. Where f'(x) denote the derivative of the function?
- 7. Define a step function.
- 8. Let $f:[a,b] \to \mathbb{R}$ and $C \in \mathbb{R}$. Show that if ϕ is an antiderivative of fon[a,b] then $\phi+C$ is also an antiderivative of f on [a,b]
- 9. State any theorem which characterises Riemann Integrable function on an interval [a, b].
- 10. Define pointwise convergence of a sequence of functions with example.
- 11. Define uniform convergence of a sequence of functions with example.
- 12. Show that the sequence $(\frac{x^n}{1+x^n})$ does not converge uniformly on [0,2] by showing that the limit function is not continuous on [0,2].

 $(10 \times 2 = 20)$

Page 1/3 Turn Over

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Prove or disprove:" If I = [a, b] and $f: I \to R$ is continuous on I then f(I) = [f(a), f(b)]."
- 14. Show that the function $f(x)=\frac{1}{x}$ is uniformly continuous on the set $A=[a,\infty)$,where a is a positive constant.
- 15. Define Jump at c of the function f:[a,b] o R where a < c < b and show that f is continuous at c iff $J_f(c)=0$.
- 16. State and prove the product rule of differentiation?
- 17. State and prove L'Hospitals Rule II?
- 18. Evaluate the limit $\lim_{x\to 0+}(x)^{\sin x}, x\in (0,\infty)$
- 19. Let $f(x)=1, for x=rac{1}{5},rac{2}{5},rac{3}{5},rac{4}{5}.$ and f(x)=0, elsewherein[0,1], show that $f\in\mathcal{R}[0,1]$ and $\int\limits_0^1f=0.$
- 20. Evaluate $\int\limits_{1}^{4} rac{cos\sqrt{t}}{\sqrt{t}} dt$.
- 21. Let $g_n:[0,1]\to\mathbb{R}$ defined by $g_n(x)=x^n$. Show that (g_n) converges but the limit is not differentiable on [0,1].

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. (a) Let I = [a,b] be a closed bounded interval and let $f:I\to R$ be continuous on I. Then prove that f has an absolute maximum and an absolute minimum on I.
 - (b) State and prove Preservation of intervals Theorem.
- 23. 1. State and prove the Mean Value theorem?
 - 2. Using Mean value theorem, Prove the following inequalities

(a.)
$$e^x \geq 1 + x, \forall x \in R$$

(b.)
$$-x < \sin x < x, \forall x > 0$$

- 24. Let [a,b] be an interval in $\mathbb R$ and let $\mathcal R[a,b]$, C'[a,b] and C[a,b] denotes set of all Riemann integrable, st of all differentiable and set of all continous real valued functions on [a,b] respectively.
 - (a) Show that $\mathcal{R}[a,b]$ is a vector space over the filed of real numbers \mathbb{R} .

- (b). Show that C'[a,b] is a **proper** subspace of C[a,b] and C[a,b] is **proper** subspace of $\mathcal{R}[a,b]$.
- 25. (a) State and prove the Cauchy Criterion for Riemann integrability of a function $f:[a,b] o \mathbb{R}.$
 - (b) Check the Riemann integrability of Dirichlet function.

(2×15=30)

