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Part A
Answer any ten questions.

Each question carries 2 marks.

1. Define a Graph. Define a loop in a graph.
2. When will you say that two graphs are isomorphic?
3. Draw all non-isomorphic complete bipartite graphs with atmost 4 vertices.

4. Define a walk. When will you say that a walk is open?

5. Define a tree. Draw a tree which is a complete graph.

6. Define spanning trees. How many spanning trees are there for K4?
7. Define Eulerian graph. Is K3 Eulerian? Justify.

8. Define closure of a graph . Draw one example.

9. Define metric space.

10. Let (X,d) be a metric space and A C X. Define an interior point of A.
11. Define convergence in a metric space using metric.

12. Define isometry.
(10%x2=20)
Part B
Answer any six questions.

Each question carries 5 marks.

13. Let G be a simple graph with n vertices and let G be its complement. Prove that for each vertex v in G,
dg(v)+dg (v) = n-1.

14.  Define incidence matrix of a graph.What can you say about the sum of the elements in the it row of of
the incidence matrix of the graph. Write down the incidence marix of K4
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If G be a graph with n vertices and q edges. Let w(G) denote the number of connected components of G. Then

prove that G has at least n-w(G) edges.

a) Define cut vertex of a graph.
b) Let v be a vertex of the connected graph G . Then prove that ‘v’ is cut vertex of G if and only if there are two

vertices ‘u’ and ‘w’ of G, both different from ‘v’, such that ‘v’ is on every u— w path in G.

Prove that a simple graph G is Hamiltonian if and only if its closure C(G) is Hamiltonian.

Prove that in any metric space X, the empty set @ and the full space X are open sets.

Define Cantor set. Prove that there exist infinitely many points in Cantor set.

Let X be a metric space. If {x,, } and {y, } are sequences in X such that z,, — x and y,, — y, show
that d(zn, yn) — d(z,y).

If {A,,} is a sequence of nowhere dense sets in a complete metric space X, then prove that there exists
a point in X which is not in any of the A}, s.
(6x5=30)
Part C
Answer any two questions.

Each question carries 15 marks.

(a)State and prove First theorem of graph theory.

(b)Prove that in any graph G there is an even number of odd vertices.

(c)Let G be a k-regular graph, where k is an odd number. Prove that the number of edges in G is a
multiple of k.

a)Let G be simple graph with at least three vertices. Then prove that G is 2- connected if and only if for each pair
of distinct vertices u and v of G, there are two internally disjoint u — v paths in G.
b) Let u and v be two vertices of the 2- connected graph. Then prove that there is a cycle passing through both u

and v.

a) In any metric space X prove that the empty set g and the full set X are closed sets.

b) Prove that a subset F of a metric space X is closed if and only if its complement F' is open.

a) Prove that if a convergent sequence in a metric space has infinitely many distinct points, then its limit
is a limit point of the set of points of the sequence.
b) Will the result be true, if the condition infinitely many distinct points is not given? Justify.

(2x15=30)
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