O 2/3

QP CODE: 20100570	Reg No	:	
A	Name	;	***************************************

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester

Core course - MM6CRT04 - LINEAR ALGEBRA

B Sc Mathematics Model I.B Sc Mathematics Model II Computer Science 2017 Admission Onwards

FEF9B611

Time: 3 Hours

Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks

- Prove that every mxn matrix A there is a unique mxn matrix B such that A+B=0
- 2. Define an orthogonal matrix. Give an example of an orthogonal matrix
- 3. a) Define an invertible matrix b)Prove that if A is invertible then $(A^{-1})' = (A')^{-1}$
- Define a basis of a vector space V and Prove that $\{(1,1), (1,-1)\}$ is a basis of R2.
- 5. Define dimension of a vector space V and Find the dimension of Rn [X]
- Define departure space and arrival space of a linear mapping. Give an example.
- 7. Define linear isomorphism of vector spaces. Give an example.
- 8. Define an ordered basis of a vector space. Prove that every basis of *n* elements give rise to *n*! distinct ordered bases.
- 9. Define transition matrix from the basis $(v_i)_m$ to the basis $(v_i)_m$ of a vector space V.
- 10. If λ is an eigen value of an invertible matrix A, then prove that $\lambda \neq 0$ and λ^{-1} is an eigen value of A^{-1} .
- 11. Define eigen value of a linear map and the eigen vector associated with it.
- 12. Define diagonalizable linear map and diagonalizable matrix.

Page 1/3

Turn Over

Part B

Answer any six questions

Each question carries 5 marks.

- Reduce the following matrix to row echelon form $\begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 0 & 1 & 1 & 3 \\ 1 & 1 & 1 & 2 & 1 \end{bmatrix}$
- 14. Find the row rank of the matrix $\begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 4 \\ 0 & -1 & -2 \\ 0 & 1 & 2 \end{bmatrix}$
- Prove that Mmxn (R) be the set of all mxn matrices is a vector space
- Prove that the intersection of any set of subspaces of a vector space V is a subspace of V
- 17. Define injective linear mapping. Prove that if the linear mapping $f: V \to W$ is injective and $\{v_1, v_2, \ldots, v_n\}$ is a linearly independent subset of V then $\{f(v_1), f(v_2), \ldots, f(v_n)\}$ is a linearly independent subset of W.
- 18. a) Define rank and nullity of a linear mapping. Find the rank and nullity of $pr_1: \mathbb{R}^3 \to \mathbb{R}$ defined by $pr_1(x,y,z) = x$.
 - b) Let V and W be vector spaces each of dimension n over a field F. If $f:V\to W$ is linear, then prove that f is surjective if and only if f is bijective.
- 19. a) Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is meant by index of nilpotency of f.
 - b) Suppose that f is nilpotent of index p. If $x \in V$ is such that $f^{p-1}(x) \neq 0$, prove that $\{x, f(x), f^2(x), \dots, f^{p-1}(x)\}$ is linearly independent
- 20. Find the eigen values and their algebraic multiplicity of $\begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$
- 21. For the nXn tridiagonal matrix An = $\begin{bmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{bmatrix}$ Prove that dct An = n + 1.

(6×5=30)

Part C

Answer any two questions

Each question carries 15 marks.

22. a)Prove that if A is an inxn matrix then the homogeneous system of equation Ax = 0 has a nontrivial solution if and only if rank A < n

b) Show that the matrix $A = \begin{bmatrix} 1 & 2 & -1 & -2 \\ -1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$ is of rank 3 and final matrices P,Q such that

PAO = [13, 0]

c) Show that the system of equations x+y+z+t=4, $x+\beta y+z+t=4$, $x+y+\beta z+(3-\beta)t=6$, 2x+ $2y + 2z + \beta t = 6$ has a unique solution if $\beta \neq 1, 2$

- 23. a) Prove that $P(x) = 2 + x + x^2$, $q(x) = x + 2x^2$, $r(x) = 2 + 2x + 3x^2$ is linearly dependent b)Let S_1 and S_2 be non empty subsets of a vector space such that $S_1 \subseteq S_2$. Prove that
 - 1) If S_2 is linearly independent then S_1 is also linearly independent
 - 2) If S_1 is linearly dependent then S_2 is also linearly dependent.

c)Determine which of following subsets of M_{3x1} R are linearly dependent

intermine which of following subsets of
$$M_{3x1}$$
 R are linearly dependent $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$ ii) $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix} \right\}$

$$\mathrm{ii)}\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0 \end{bmatrix} \right\}$$

- 24. a) Define Im f and Ker f where f is a linear mapping from a vector space to a vector space.
 - b) Write image and kernel for $f_A: Mat_{n\times 1} \mathbb{R} o Mat_{n\times 1} \mathbb{R}$ described by $f_A(\mathbf{x}) = A\mathbf{x}$ where A is a given real $n \times n$ matrix.
 - c) Find Im f and Ker f when $f: \mathbb{R}^3 \to \mathbb{R}^3$ is given by $f(a,b,c) = (a+b,\,b+c,\,a+c)$.
- 25 a) Define similar matrices and state whether similar matrices have the same rank. Show that if matrices A, B are similar then so are A', B'.

b) Check whether for every $\vartheta \in \mathbb{R}$, the complex matrices $\begin{bmatrix} \cos \vartheta & \sin \vartheta \\ -\sin \vartheta & \cos \vartheta \end{bmatrix}$,

$$\begin{bmatrix} e^{i\vartheta} & 0 \\ 0 & e^{-i\vartheta} \end{bmatrix}$$
 are similar.

c) Prove that the relation of being similar is an equivalence relation on the set of n imes n matrices

 $(2 \times 15 = 30)$