

QP CODE: 20100567

Reg No	:	
--------	---	--

Name :

BSc DEGREE (CBCS) EXAMINATION, MARCH 2020

Sixth Semester

Core course - MM6CRT01 - REAL ANALYSIS

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science,B.Sc Computer Applications

Model III Triple Main

2017 Admission Onwards

BFF2D188

Time: 3 Hours

Maximum Marks:80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Let $A \subseteq R$. If $f: A \to R$ is continuous on A, then prove that |f| is continuous on A.
- 2. Give an example of a discontinuous function defined on a closed interval C but not bounded on C
- 3. Define Monotone function. Show that such functions need not be continuous.
- 4. Let f, g are differentiable functions, then prove that f g is also differentiable?
- 5. Given that the function $f: R \to R$ defined by $f(x) = x^5 + 4x + 3$ is invertible and let g be its inverse. Find the value of g'(8)?
- 6. Define increasing function with a proper example?
- 7. Let $f, g : [a, b] \to \mathbb{R}$, if $\dot{\mathcal{P}}$ is a tagged partition of [a, b] show that $S(f + g; \dot{\mathcal{P}}) = S(f; \dot{\mathcal{P}}) + S(g; \dot{\mathcal{P}})$
- 8. Give an example of a function which is Riemann integrable on an interval [a,b] in \mathbb{R} but not continuous in [a,b]
- 9. Give an example of a function on [0,1] which is Riemann integrable but not continous.
- 10. Evaluate $\lim_{x \to \infty} e^{-nx}$.
- 11. Define uniform norm of a bounded function $\phi:A\to R$. State a necessary and sufficient condition for uniform convergence of a sequence of bounded functions (f_n) on $A\subseteq R$

12. If a>0, show that $\lim_{x\to\infty}\int_a^{\pi}\frac{(simx)}{(nx)}dx=0$.

 $(10 \times 2 = 20)$

Part B

Answer any six questions

Each question carries 5 marks.

- 13. Define Thomae's function on $(0, \infty)$ and show that it is continuous precisely at the irrational points in $(0, \infty)$.
- 14. Define $g: R \to R$ by g(x) = 2x for x rational, and g(x) = x + 3 for x irrational. Find all points at which g is continuous.
- 15. State and prove Bolzano's Intermediate value theorem.
- State and Prove the Chain rule of differentiation?
- State and prove the first derivative test for extrema?
- Evaluate the limit $\lim_{x\to 0+} (\sin x)^x, x\in (0,\pi)$
- If f is continous on [a, b] then the indefinite integral defined by $F(z) = \int_{-\infty}^{\infty} f \ \forall z \in [a,b]$ is differentiable on [a,b] and $F'(x) = f(x) \ \forall \in x[a,b]$.
- 20. Evaluate $\int_{1}^{4} \frac{\sqrt{1+\sqrt{t}}}{\sqrt{t}} dt$.
- 21. Check the uniform convergence of (g_n) on $\mathbb R$ where $g_n(x)=rac{x^2+nx}{n}$.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. (a) State and prove Continuous Extension Theorem.
 - (b) Let I be a closed bounded interval and let f:I o R be continuous on I . Then prove that f is uniformly continuous on I.
- 23. (a.) State and Prove L'Hospital's Rule I
 - (b.) Using this, find the following

$$\begin{array}{l} \text{(i.)} \lim_{x \to 0+} \frac{\tan x - x}{x^3}, x \in \left(0, \frac{\pi}{2}\right) \\ \text{(ii.)} \lim_{x \to 0+} \frac{\log \cos x}{x} \end{array}$$

(ii.)
$$\lim_{x\to 0+} \frac{\log\cos x}{x}$$

- 24. (a) Suppose that $f:[a,b]\to\mathbb{R}$ and that f(x)=0, except for a finite number of ponits c_1,c_2,\ldots,c_n in [a,b]. Prove that $f\in\mathcal{R}[a,b]$ and $\int\limits_a^b f=0$.

 (b) If $g\in\mathcal{R}[a,b]$ and if f(x)=g(x) except for a finite number of ponts in [a,b], prove that $f\in\mathcal{R}[a,b]$ and that $\int\limits_a^b f=\int\limits_a^b g$.
- 25. (a) State and prove the Cauchy Criterion for Riemann integrability of a function f: [a, b] → ℝ.
 (b) Check the Riemann integrability of Dirichlet function.
 (2×15=30)