

QP CODE: 24018056

Reg No

Name

.....

M Sc DEGREE (CSS) EXAMINATION, APRIL 2024

Fourth Semester

Core - ME010401 - SPECTRAL THEORY

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
F2F19AB0

Time: 3 Hours

Weightage: 30

Instructions: (Applicable for **Private Registration, 2020 Admission Onwards**) This question paper contains two sections. Answer section I questions in the answer book provided. Section II Internal examination questions must be answered in the question paper itself. Follow the detailed instructions given under section II.

SECTION I

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. If a normed space X is reflexive, then prove that it is complete.
- 2. Show that uniform operator convergence $T_n \to T$, $T_n \in B(X,Y)$, implies strong operator convergence with the same limit.
- 3. Define fixed point of a mapping. Give an example.
- **4**. Define eigenvalues and eigenvectors of a linear operator $T:D(T)\to X$, where $X\neq\{0\}$ is a complex normed space and $D(T)\subset X$.
- 5. When we can say that an operator function $S: \Lambda \to B(X,X)$, where Λ be an open subset of C and X is a Banach space is locally holomorphic?
- 6. Define inverse of an element $x \in A$, where A is an algebra with identity. Show that inverse of an element if it exist is unique.
- 7. Let A be a complex Banach algebra with identity. Then show that the spectrum $\sigma(x)$ of an $x \in A$ is closed.
- 8. If X is a finite dimensional normed space then show that the identity operator $I: X \to X$ is not compact.
- 9. Let P_1 and P_2 be projections of a Hilbert space H onto Y_1 and Y_2 respectively and $P_1P_2=P_2P_1$. Show that $P_1+P_2-P_1P_2$ is a projection of H onto Y_1+Y_2 .

10. Let P_1 and P_2 be projections defined on a Hilbert space H and let $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$. If the difference $P = P_2 - P_1$ is a projection, prove that $Y_1 \subset Y_2$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Let (x_n) be a weakly convergent sequence in a normed space X, say, $x_n \rightharpoonup x$. Then prove the following,
 - (a) The weak limit x of (x_n) is unique.
 - (b) Every subsequence of (x_n) converges weakly to x.
 - (c) The sequence $(||x_n||)$ is bounded.
- 12. Let X and Y are normed spaces. Prove that $||(x,y)|| = \max\{||x||, ||y||\}$ defines a norm on $X \times Y$.
- 13. Prove that the spectrum $\sigma(T)$ of a bounded linear operator T on a complex Banach space X is closed.
- **14**. Find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$.
- 15. If T is a compact linear operator on a normed space X, Prove that for every $\lambda \neq 0$, dim $\mathcal{N}(T_{\lambda}^n) < \infty$ and range of T_{λ}^n is closed.
- 16. Prove that every normed space X can be expressed as the direct sum of two closed subspaces, which are the null space and range of the operator T_λ^r where T: X → X is a compact linear operator and λ ≠ 0.
- 17. Let $T: H \to H$ be a bounded linear operator on a complex Hilbert space H. Then prove that a number $\lambda \in \rho(T)$ if and only if there exists a c > 0 such that $\|T_{\lambda}x\| \ge c\|x\| \quad \forall x \in H$.
- 18. Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space $H \neq \{0\}$. Prove that $\sup_{\|x\|=1} \langle Tx, x \rangle \in \sigma(T)$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. State and prove Bounded Inverse Theorem.
- 20. State and prove Spectral Mapping Theorem for Polynomials.

- 21. If B is a subset of a metric space X, then prove the following
 - ${\bf a}.$ If ${\bf B}$ is relatively compact, then ${\bf B}$ is totally bounded.
 - b. If B is totally bounded and X is complete, then B is relatively compact.
 - C. If B is totally bounded, then for every $\epsilon>0$ B has a finite ϵ net contained in B.
 - d . If B is totally bounded, then B is separable.
- 22. Let (T_n) be a sequence of bounded self-adjoint linear operators on a complex Hilbert space H such that $T_1 \leq T_2 \leq \cdots \leq T_n \leq \cdots \leq K$ where K is a bounded self-adjoint linear operator on H. Suppose that any T_j commutes with K and with every T_m . Then prove that (T_n) is strongly operator convergent and the limit operator T is linear, bounded and self-adjoint and satisfies $T \leq K$.

(2×5=10 weightage)