

Reg. No	•••••
N	
Name	

M.Sc. DEGREE (C.S.S.) EXAMINATION, JANUARY 2024

Third Semester

Faculty of Science

Branch I-(A) Mathematics

MT 03 C 13—DIFFERENTIAL GEOMETRY

(2018 Admissions-Supplementary/2017,2016 and 2015 Admissions-Mercy Chance)

Time : Three Hours

Maximum Weight: 30

Part A

Answer any **five** out of eight questions. Each question has weight 1.

- 1. Find and sketch the gradient field of $f(x_1, x_2) = x_1 + x_2$.
- 2. Show that the gradient of a smooth function of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p.
- 3. Define the terms Gauss map and shperical image.
- 4. Define the covariant derivative of a smooth vector field.
- 5. What is the geometric meaning of the Weingarten map L_p .
- 6. Define the terms circle of curvature of a plane curve.
- 7. Explain the terms principal curvature and principle curvature directions of an oriented n surface S at a point $p \in S$.
- 8. What is diffeomorphism?

 $(5 \times 1 = 5)$

Part B

Answer any five questions. Each question has weight 2.

- 9. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 10. Find the integral curve through p = (1, 1) for the vector field $X(x_1, x_2) = (x_2, x_1)$.

Turn over

24000223

- 11. Describe the spherical image when n=2 of the n-surface oriented by $\nabla f / \| \nabla f \|$, where f is the function defined by the left hand side of the equation, the cylinder $x_2^2 + x_3^2 + \dots + x_{n+1}^2 = 1$.
- 12. Compute $\nabla_v f$ where $f(x_1, x_2) = 2x_1^2 + 3x_2^2, v = (1, 0, 2, 1)$.
- 13. Find the velocity, acceleration and speed of the curve $d(t) = (\cos t, \sin t)$.
- 14. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$, where $\alpha(t) = (t^2, t^3)$, I = [0, 2], n = 1.
- 15. Find the normal curvature k(v) for each tangent direction v for the surface $x_1 + x_2 + ... + x_{n+1} = 1$ at p = (1,0,.....0).
- 16. Define the differential of a smooth map $\phi: U \to \mathbb{R}^m$, where U is an open set in \mathbb{R}^n .

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. (a) Sketch the cylinder $f^{-1}(0)$, where $f(x_1, x_2, x_3) = x_1 x_2^2$.
 - (b) Let U be an open set in \mathbb{R}^{n+1} and let $f: \mathbb{U} \to \mathbb{R}$ be smooth. Let $p \in \mathbb{U}$ be a regular point of f and let c = f(p). Show that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.
 - (c) Sketch the level sets $f^{-1}(-1), f^{-1}(0)$ and $f^{-1}(1)$ for $f(x_1, x_2, ..., x_{n+1}) = x_1^2 + x_n^2 ... x_{n+1}^2$ for n = 2.
- 18. (a) Let S be an n-surface in \mathbb{R}^{n+1} , $\alpha: \mathbb{I} \to \mathbb{S}$ be a parametrized curve in S, to $\in \mathbb{I}$ and $v \in \mathbb{S}_{\alpha}$ (to). Show that there is a unique vector field V, tangent to S along α , which is parallel and has V (to) = v.
 - (b) Define Levi-Civita parallelism and explain its properties.
- 19. (a) Define the Weingarten map and show that it is self adjoint.
 - (b) Compute $\nabla v X$, where $v \in \mathbb{R}_p^{n+1}$, $p \in \mathbb{R}^{n+1}$, and X are given by $X(x_1, x_2) = (x_1, x_2, x_1 \cdot x_2, x_2^2)$, v = (1, 0, 0, 1) and n = 1.

24000223

- 20. Let C be an oriented plane curve. Prove that there exists a global parametrization of C if and only if C is connected.
- 21. (a) Find the Gaussian curvature $k: S \to R$ where S is the cone $x_1^2 + x_2^2 x_3^2 = 0, x_3 > 0$.
 - (b) Find the Gauss-Kronecker curvature of the parametrized 3-surface ϕ , where $\phi(x,y,z) = \left(x,y,z,x^2+y^2+z^2\right).$
- 22. (a) State and prove inverse function theorem.
 - (b) Let S be a compact connected oriented n surface in \mathbb{R}^{n+1} . Whose Gauss–Kronecker curvature is nowhere zero. Show that the Gauss map $\mathbb{N} = \mathbb{S} \to \mathbb{S}^n$ is a diffeomorphism.

 $(3 \times 5 = 15)$

