

0	P	C	0	D	F	=	24	1	0	0	1	0	5	9

Reg No :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, MARCH 2024 Sixth Semester

CORE COURSE - MM6CRT04 - LINEAR ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

6A418A62

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Define the Hermite matrix. Give an example of a Hermite matrix.
- 2. a)Define linearly dependent rows.

b)Prove that in the matrix $A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$ the columns are linearly dependent.

- 3. If V is a Vector space over a field F. Prove that a) $\forall \lambda \in F, \lambda 0 = 0$
- b) $\forall x \in V, 0x = 0$
- 4. Prove that $\{(x, y, z, t) : x = y, z = t\}$ is a subspace of R^2
- 5. Check whether { (1,1,2), (1,2,5), (5,3,4) } is a basis of R3.
- 6. If f:V o W is linear, X is a subset of V and Y is a subset of W, define direct image of X under f and inverse image of Y under f.
- Determine the transition matrix from the ordered basis $\{(1,0,0,1),(0,0,0,1),(1,1,0,0),(0,1,1,0)\}$ of \mathbb{R}^4 to the natural ordered basis of \mathbb{R}^4
- 8. a) Define similar matrices.
 - b) "Similar matrices have the same rank"-True or False?
- 9. Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is meant by index of nilpotency of f.

- 10. Find the eigen values of A = $\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$
- 11. Define eigen value of a linear map and the eigen vector associated with it.
- 12. Define diagonalizable linear map and diagonalizable matrix.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries **5** marks.

- a) Prove that addition of matrices is associative.
 - b) Write 3x3 matrix whose entries are given by $x_{ij} = (-1)^{i-j}$
- 14. a) If A and B are orthogonal nxn matrices prove that AB is orthogonal.
 - b) Prove that a real 2x2 matrix is orthogonal if and only if it is of one of the forms $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$,

$$\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$
 Where $a^2 + b^2 = 1$.

- 15. a)Define span S of a vector space V and Prove that $S = \{(1,0), (0,1)\}$ is a spanning set of \mathbb{R}^2 b)Prove that $\{(1,1,0), (2,5,3), (0,1,1)\}$ of \mathbb{R}^3 is linearly dependent.
- 16. If S is a subset of V, then prove that S is a basis if and only if S is a maximal independent subset.
- 17. Define $Im\ f$ and $Ker\ f$ where $\ f$ is a linear mapping from a vector space to a vector space. Write image and kernel for the i-th projection of \mathbb{R}^n onto \mathbb{R} .
- 18. Define injective linear mapping. Prove that if the linear mapping $f:V\to W$ is injective and $\{v_1,v_2,\ldots,v_n\}$ is a linearly independent subset of V then $\{f(v_1),f(v_2),\ldots,f(v_n)\}$ is a linearly independent subset of W.
- 19. a) Let V be a vector space of dimension $n \geq 1$ over a field F. Then prove that V is isomorphic to the vector space F^n .
 - b) If V and W are vector spaces of the same dimension n over F, then prove that V and W are isomorphic.
- 20. Determine the eigen values and their algebraic multiplicities of the linear mapping f: R3 \rightarrow R3 given by f(x,y,z) = (x+2y+2z, 2y+z, -x+2y+2z)

For the nXn tridiagonal matrix An =
$$\begin{bmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{bmatrix} \text{ Prove that det}$$

An = n + 1.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

22. a) Prove that if A is an mxn matrix then the homogeneous system of equation Ax = 0 has a nontrivial solution if and only if rank A < n.

solution if and only if rank A < n. b) Show that the matrix A =
$$\begin{bmatrix} 1 & 2 & -1 & -2 \\ -1 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$
 is of rank 3 and final matrices P,Q such that

 $PAQ = [l_{3}, 0].$

- c) Show that the system of equations x+y+z+t=4, $x+\beta y+z+t=4$, $x+y+\beta z+(3-\beta)t$ = 6, 2x + 2y + 2z + etat = 6.has a unique solution if eta
 eq 1, 2.
- 23. a) Define a left inverse and right inverse of a matrix.
 - b) Prove that the matrix A= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix}$ has a common unique left inverse and unique right inverse.
 - c) Find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$
 - d) If A_1, A_2, \dots, A_P are invertible nxn matrices, prove that the product A_1, A_2, \dots, A_P is invertible and that $(A_1, A_2, ..., A_P)^{-1} = A_P^{-1} A_2^{-1} A_1^{-1}$
- 24. Let V and W be vector spaces each of dimension n over a field F. If f:V o W is linear then prove that the following statements are equivalent:
 - (iv) f carries bases to (ii) f is surjective (iii) f is bijective (i) f is injective bases, in the sense that if $\{v_1,\ldots,v_n\}$ is a basis of V then $\{f(v_1),\ldots,f(v_n)\}$ is a basis of W.

1

25. A linear mapping $f:\mathbb{R}^3 \to \mathbb{R}^3$ is such that $f(1,0,0)=(0,0,1), \ f(1,1,0)=(0,1,1), \ f(1,1,1)=(1,1,1).$ Determine f(x,y,z) for all $(x,y,z)\in\mathbb{R}^3$ and compute the matrix of f relative to the ordered basis $B=\{(1,2,0),(2,1,0),(0,2,1)\}.$ If $g:\mathbb{R}^3\to\mathbb{R}^3$ is the linear mapping given by $g(x,y,z)=(2x,\,y+z,\,-x),$ compute the matrix $f\circ g\circ f$ relative to the ordered basis B.

 $(2 \times 15 = 30)$