

QP CODE: 24018060 24018060

Reg No : .....

Name : .....

# M Sc DEGREE (CSS) EXAMINATION, APRIL 2024

## **Fourth Semester**

## **Elective - ME800401 - DIFFERENTIAL GEOMETRY**

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
3B442B56

Time: 3 Hours Weightage: 30

Instructions: (Applicable for Private Registration, 2020 Admission Onwards) This question paper contains two sections. Answer section I questions in the answer book provided. Section II Internal examination questions must be answered in the question paper itself. Follow the detailed instructions given under section II.

#### **SECTION I**

# Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Define level set of a function  $f:U o\mathbb{R}$  where  $U\subset\mathbb{R}^{n+1}$  and explain with an example
- 2. Define regular point of a smooth function  $f:U o\mathbb{R}$  in an open set  $U\subseteq\mathbb{R}^{n+1}$  and find whether (0,0) is a regular point of  $f(x_1,x_2)=x_1^2+x_2^2$
- 3. Describe the spherical image, when n=1, of  $x_1^2-x_2^2-\ldots-x_{n+1}^2=4$ ,  $x_1>0$  oriented by  $\mathbf{N}=\frac{\nabla f}{||\nabla f||}$ .
- 4. Find the velocity, the acceleration and the speed of the parametrized curve  $\alpha(t) = (\cos t, \sin t, 2\cos t, 2\sin t)$
- 5. Prove that parallel transport is a linear map.
- 6. Define the derivative of a smooth vectorfield  $\mathbf{X}$  on an open set U in  $\mathbb{R}^{n+1}$  with respect to a vector  $\mathbf{v} \in \mathbb{R}_p^{n+1}$ ,  $p \in U$ . Show that  $\nabla_{\mathbf{v}}(\mathbf{X} + \mathbf{Y}) = \nabla_{\mathbf{v}} \mathbf{X} + \nabla_{\mathbf{v}} \mathbf{Y}$ .
- 7. Write a formula for finding curvature of a plane curve at the point p. Also define curvature of a plane curve.
- 8. Explain circle of curvature and center of curvature. Also define radius of curvature of a plane curve at the point p.
- 9. Define global property. Explain with an example.



10. Define differential of a smooth map  $\varphi: U \to \mathbb{R}^m$ , where U is an open set in  $\mathbb{R}^n$ . Show that the value of the differential does ot depend on the choice of parametrized curve.

(8×1=8 weightage)

#### Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Let  $\mathbf{X}$  be a smooth vector field on an open set  $U \subset \mathbb{R}^{n+1}$  and let  $p \in U$ . Then prove that there exists an open interval I containing 0 and an integral curve  $\alpha : I \to U$  of  $\mathbf{X}$  such that
  - $(i)\alpha(0) = p$
  - (ii) If  $\beta: \tilde{I} \to U$  is any other integral curve of  $\mathbf{X}$  with  $\beta(0) = p$  then  $\tilde{I} \subset I$  and  $\beta(t) = \alpha(t)$  for all  $t \in \tilde{I}$
- 12. Let  $S \subset \mathbb{R}^{n+1}$  be a connected n-surface in  $\mathbb{R}^{n+1}$ . Show that there exists on S exactly two unit normal vector fields  $N_1$  and  $N_2$ .
- 13. Verify that great circles are geodesics in the unit 2-sphere.
- 14. Let S be an n -surface in  $\mathbb{R}^{n+1}$ , let  $\alpha: I \to S$  be a parametrized curve, and let  $\mathbf{X}$  and  $\mathbf{Y}$  be vector fields tangent to S along  $\alpha$ . Show that
  - a) (X + Y)' = X' + Y'
  - b)  $(f\mathbf{X})' = f'\mathbf{X} + f\mathbf{X}'$  for all smooth functions f along  $\alpha$ .
- 15. Define length  $l(\alpha)$  of the parametrized curve  $\alpha: I \to \mathbb{R}^{n+1}$ . Show that length of a parametrized curve is invariant under reparametrization.
- 16. Let  $\eta$  be the 1-form on  $\mathbb{R}^2 \{0\}$  defined by  $\eta = -\frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$ . Let C denote the ellipse  $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$  oriented by its inward normal. Show that the 1-form  $\eta$  is not exact.
- 17. Find the normal curvature of the 1-sheeted hyperboloid  $-x_1^2 + x_2^2 + x_3^2 = 1$  in  $\mathbb{R}^3$  oriented by the inward normal vector field at p = (0,0,1) and  $\mathbf{v} = (p,0,1,0)$ .
- 18. Find the orientation vector field along the parametrized torus  $\varphi$  in  $\mathbb{R}^3: \varphi(\theta,\phi) = ((a+b\cos\phi)\cos\theta, (a+b\cos\phi)\sin\theta, b\sin\phi).$

(6×2=12 weightage)

#### Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Prove the Lagrange Multiplier theorem for an n-surface in  $\mathbb{R}^{n+1}$  by stating the conditions. Hence find the extreme points of the function  $g(x_1,x_2)=ax_1^2+2bx_1x_2+cx_2^2$  on the unit circle  $x_1^2+x_2^2=1$ .
- 20. Given S is a compact connected oriented n-surface in  $\mathbb{R}^{n+1}$  exhibited as a level set  $f^{-1}(c)$  of a smooth function  $f:\mathbb{R}^{n+1}\to\mathbb{R}$  with  $\nabla f(p)\neq 0$ ,  $\forall p\in S$ . Is the Gauss map from S to the unit sphere  $S^n$  onto ? Explain.



- 21. Prove that the Weingarten map  $L_p$  is self-adjoint.
- **22**. a) Define the second fundamental form of an oriented n-surface in  $\mathbb{R}^{n+1}$  at a point. When it is said to be positive definite, negative definite and definite?
  - b) Prove that for each compact oriented n-surface S in  $\mathbb{R}^{n+1}$ , there exists a point p such that the second fundamental form at p is definite.

(2×5=10 weightage)