

QP CODE: 24020691

Reg No

Name

B.Sc DEGREE (CBCS) REGULAR EXAMINATIONS, APRIL 2024

Fourth Semester

B.Sc Mathematics Model II Computer Science

Complementary Course - MM4CMT02 - MATHEMATICS - OPERATIONS RESEARCH - NON LINEAR PROGRAMMING

2017 Admission Onwards 4E5C12FA

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Using graphical method, list all integer feasible solutions of $Max\ x_1+x_2$ subject to $2x_1+x_2\leq 6, x_1,x_2\geq 0$ and x_1,x_2 are intergers
- 3. What are the disadvantages of cutting plane method?
- 4. When a problem is said to be pruned?
- 5. Define Convex programming problem.
- Define Lagrangian Function.
- 7. Define primal and dual problems in Nonlinear Programming Problem.
- 8. Find the Lagrangian function for the following problem $Min~x_1+x_2^2+x_3~\text{Subject to}~x_1+x_2+x_3\leq 4, x_1\leq 8, x_3\leq 3~x_1, x_2, x_3\geq 0$
- 9. Mark on the graph the set of feasible solutions of $(x_1-1)(x_2-1)\leq 1,\; x_1+x_2\geq 6,\; x_1,x_2\geq 0$
- 10. What assumptions can be made in the minimum of a Quadratic Programming Problem if P=0 and X^I C X is Positive Semidefinite?
- 11. What assumptions can be made in the minimum of Quadratic Programming Problem if $P \neq 0$ and X'CX is Positive Definite)?
- 12. Define separable programming problem.

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Using cutting plane method , solve $Min\ 2x_1-3x_2$, subject to $x_1-x_2\leq 4, x_1+3x_2\leq 6, x_1, x_2$ non-negative integers.
- 14. Using cutting plane method solve $Max\ 5x_1-2x_2$ subject to $x_1+x_2\leq 3, x_1-2x_2\leq 4, x_1, x_2$ are non negative integers
- 15. Solve by Branch and Bound Method

 Minimize $4x_1+5x_2$ subject to $3x_1+x_2\ge 2$, $x_1+4x_2\ge 5$, $3x_1+2x_2\ge 7$, x_1,x_2 non negative integers
- 16. Find the initial branches of the problem Minimize $3x_1-x_2$ subject to $-10x_1+6x_2\leq 15, 14x_1+18x_2\geq 63, x_1,x_2 \text{ non negative integers}.$
- 17. Solve graphically $(x_1-1)^2 + (x_2-3)^2$, Subject to $x_1+2x_2 \leq 4, x_1+x_2 \leq 2, x_1, x_2 \geq 0$
- 18. Write K-T conditions for the problem minimise $\dfrac{3x_1+x_2+3}{x_1+2x_2+6}$ subject to $x_1+2x_2\leq 12, 2x_1-x_2\leq 4, \ x_1,x_2\geq 0$
- 19. Solve by K-T conditions for the LP maximise $3x_1+2x_2$ subject to $2x_1-x_2\leq 4, x_1+x_2\leq 8, x_1, x_2\geq 0$
- 20. Solve by the method of Quadratic programming minimise $-6x_1+2x_1^2-2x_1x_2+2x_2^2 \text{ subject to } x_1+x_2\leq 2, x_1,x_2\geq 0$
- 21. Solve the following Separable Programming Problem $\max x_1^2+2x_2^2, \text{ Subject to } 2x_1+x_2\leq 4, x_1+2x_2\leq 6, x_1,x_2\geq 0$ (6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Solve by Branch and Bound method $Min x_1 4x_2$ subject to $x_1 + 2x_2 \le 5, x_1 + 5x_2 \le 10, x_1, x_2$ are non-negative integers
- 23. Solve by K-T conditions maximise $2x_1-x_1^2+x_2$ subject to $2x_1+3x_2\leq 6, 2x_1+x_2\leq 4, x_1, x_2\geq 0$
- 24. Solve by K-T conditions minimise $16(x_1-2)^2+(4x_2-9)^2$ subject to $x_1-x_2^2\geq 0, x_1+x_2\leq 6, x_1, x_2\geq 0$
- 25. Solve by the method of Separable programming $\text{Maximise } 9-(x_1-3)^2-(x_2-2)^2 \text{ subject to } 4x_1^2+x_2^2\leq 16, x_1,x_2\geq 0$