

QP CODE: 24001057

Reg No :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, MARCH 2024

Sixth Semester

CORE COURSE - MM6CRT03 - COMPLEX ANALYSIS

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

A66A3E10

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- Define Interior point and Boundary point in terms of neighbourhood
- 2. Find f'(z) where $f(z) = \frac{z-1}{2z+1}$ where $z \neq \frac{-1}{2}$
- 3. If u+iv is analytic, then under what condition will v+iu be analytic
- 4. Find iⁱ and its principal value
- 5. Separate the real and imaginary parts of Sinhz.
- 6. Define Simple closed curve.
- 7. What is the value of $\int_C (z-1) dz$ where C is the line segment z=x, $0 \le x \le 2$.
- 8. Define simply connected and multiply connected domain.
- Define the limit of an infinite sequence of complex numbers.
- 10. With the aid of the identity $\cos z = -\sin(z-\frac{\pi}{2})$, expand $\cos z$ into a Taylor series about the point $z_0 = \frac{\pi}{2}$
- 11. State Cauchy's Residue Theorem.
- 12. Prove that if the improper integral over $-\infty < x < \infty$ exists, then its Cauchy Principal Value exists.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 14. Prove that $|\exp(-2z)| < 1$ if and only if Re(z) > 0
- 15. Find where $an^{-1}z=rac{i}{2}\;\lograc{i+z}{i-z}$ is analytic
- 16. Evaluate $\int_C \frac{1}{z^2+2z+2} dz$ where C is the circle |z|=1.
- 17. Evaluate $\int_C rac{\sinh z}{\left(2z-z^2
 ight)^2}$ Where C is the circle |z|=1 oriented counterclockwise
- 18. State and prove Cauchy's inequality.
- Use Maclaurin's series expansion of $\sin z$ to obtain such a series for $\cos z$
- 20. Using residues, evaluate $\int_C e^{\left(\frac{1}{z^2}\right)} dz$ where C is the unit circle about the origin.
- State the characterization of poles of order m of a complex function f(z) and the formula for residue at z_0 of the poles of order m. Find the residue at z=i of $f(z)=\frac{z^3+2z}{(z-i)^3}$. (6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. a) State and prove the sufficient condition for a function f(z) to be differentiable.
 - b) Show that the function $f(z) = \ln(|z|) + i \operatorname{Arg}(z)$ is analytic onits domain of definition and $f'(z) = \frac{1}{z}$
- 23.
- · Prove that any polynomial of degree n has atleast one zero
- · State and Prove Liouvilles theorem
- 24. a) Derive the Laurent series expansion of $\frac{e^z}{(z+1)^2}$ in terms of z+1 , if

$$0 < |z+1| < \infty$$

b) Let $f(z)=rac{1}{(z-i)^2}$. Use Laurent series expansion to prove that

$$\int_C rac{dz}{(z-i)^{-n+3}} = 2\pi i, n=2$$

- c) Show that for $0<\mid z-1\mid <2$ $\frac{z}{(z-1)(z-2)}=\frac{-1}{2(z-1)}-3\sum_{n=0}^{\infty}\frac{(z-1)^n}{2^{n+1}}$
- Define the Removable singular points, essential singular points and a pole of order m, of a complex function with examples. Verify the examples with their series representations.