

QP CODE: 24009036



Reg No

Name

## B.Sc DEGREE (CBCS ) SPECIAL REAPPEARANCE EXAMINATIONS, MARCH 2024 Fifth Semester

## CORE COURSE - MM5CRT01 - MATHEMATICAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science & B.Sc Computer Applications Model III Triple Main

2021 Admission Only

FCFCA3D9

Time: 3 Hours

Max. Marks: 80

## Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Prove that the union of two disjoint denumerable sets are denumerable?
- 2. Prove that  $a \times b = 0$  implies eithera = 0 or b = 0
- 3. Define absolute value function?
- 4. Let  $I_n=\left(0,rac{1}{n}
  ight), n\in N$  Prove that  $\cap_{n=1}^\infty I_n=\phi$
- 5. Define convergent an ddivergent sequences. Give examples.
- 6. If a > 0, prove that  $lim(\frac{1}{1+na}) = 0$ .
- 7. Prove that (n) is divergent.
- 8. Prove that  $(1+(-1)^n)$  is not Cauchy.
- 9. Let  $(x_n)$  and  $(y_n)$  be two sequences of real numbers and suppose that  $x_n \le y_n$  for all n. Prove that if  $\lim x_n = +\infty$  then  $\lim y_n = +\infty$ .
- 10. Show that the harmonic series  $\sum \frac{1}{n}$  diverges.
- 11. Is the series  $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$  is absolutely convergent or not? Why?
- 12. Let  $f:A o \mathscr{R}$  and let  $c\in \mathscr{R}$  ,then define the boundedness of a function f on a neighborhood of c .

 $(10 \times 2 = 20)$ 



- 13. State and prove any two alternate definitions for supremum of a set?
- 14. Prove that If A, B are bounded sets then Sup(A+B) = Sup(A+Sup(B)) where  $A+B=\{a+b:a\in A,b\in B\}$
- 15. Let  $X = (x_n)$  and  $Y = (y_n)$  be sequences of real numbers that converges to x and y respectively and c  $\epsilon$  R. Prove that the sequences cX converges to cx.
- 16. What is Euler number. Prove that Euler number lies between 2 and 3.
- 17. State and prove Monotone Subsequence Theorem.
- 18. State and prove the root test for the absolute convergence of a series in R.
- 19. State and prove Abel's Lemma.
- 20. If  $f:A o\mathscr{R}$  and if c is a cluster point of A, then prove that f can have only one limit
- 21. Evaluate the one-sided limits of the function  $h(x)=rac{1}{(e^{rac{1}{x}}+1)}$  at x=0.

 $(6 \times 5 = 30)$ 

## Part C

Answer any two questions.

Each question carries 15 marks.

- 22. (a.) State and Prove Nested interval property?
  - (b.) Prove that the set of real numbers is not countable?
- 23. (a) State and prove Monotone Convergence Theorem.
  - (b) Prove that  $(x_n)$  is divergent, where  $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$  forevery  $n \in \mathbb{N}$ .
- Test the convergence and absolute convergence of the following series.
  - $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{(n^2+1)}$
  - Whose nth term is  $\frac{n^n}{(n+1)^{n+1}}$
- 25. (a) Let  $A\subseteq \mathscr{R}, f,g:A\to \mathscr{R}$ , and let  $c\in \mathscr{R}$  be a cluster point of A, Suppose that  $f(x) \leq g(x)$  for all  $x \in A$ ,  $x \neq c$ , Then prove the following

  - If  $\lim_{x\to c} f=\infty$ , then  $\lim_{x\to c} g=\infty$ .
     If  $\lim_{x\to c} g=-\infty$ , then  $\lim_{x\to c} f=-\infty$ .
  - (b) Give an example of a function that has a right-hand limit but not a left-hand limit at a point.
  - (c) Evaluate the limit or show that it do not exist "  $\lim_{x \to 1} \frac{x}{x-1}$  where  $x \neq 1$ .