

QP CODE: 24018745

Reg No :

Name

MSc DEGREE (CSS) EXAMINATION, APRIL 2024

Second Semester

CORE - ME010204 - COMPLEX ANALYSIS

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
6B32491C

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.
 Weight 1 each.

- 1. Differentiate between point wise convergence and uniform convergence of sequence of functions.
- 2. Find the symmetric points of i and 1 w.r.t the circle |z-3|=1 .
- 3. Prove fundamental inequality for an arbitrary complex function f(t).
- 4. If the closed curve γ lies inside of a circle , then prove that the index n(γ ,a) is zero for all points outside the circle.
- 5. Evaluate $\int_{|z|=2} \frac{dz}{z^2+1}$.
- 6. State the Cauchy's integral formula for higher derivatives. Evaluate $\int\limits_{|z|=2}^{} \frac{e^{2z}}{(z+1)^4} dz$.
- 7. Suppose that f(z) is analytic in a region Ω' obtained by omitting a point a from Ω . State a necessary and sufficient condition for f(z) to have an analytic extension in Ω .
- 8 Prove that the poles of a meromorphic function cannot have a limit point.
- 9 What do you mean by 'a cycle in a region is homologous to zero'?
- Define connectivity of a multiply connected region.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Find the correspondence between the coordinates of a point on the Riemann sphere and its image in the complex plane.

- 12. Show that an analytic function f(z) in a region W reduces to a constant if its modulus or argument is a constant.
- 13. Define rectifiable arcs. State and prove the necessary and sufficient condition for an arc to be rectifiable.
- 14. If f(z) is an analytic function in an open disk Δ , then evaluate $\int_{\gamma} f(z)dz$ where γ is any closed curve in Δ .
- 15. Show that an isolated singularity of f(z) cannot be a pole of $e^{f(z)}$.
- 16 State and prove the theorem on local correspondence.
- 17 Write a brief note on calculus of residues.
- 18. How many roots of the equation $z^4 6z + 3 = 0$ have their modulus between 1 and 2?

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (i) Prove that the set of all linear transformations form a group under composition mapping.
 - (ii)Show that a linear transformation $w=rac{az+b}{cz+d}$, c
 eq 0 is composed by a translation, an inversion, a rotation and a homothetic transformation.
 - (iii) Show that cross ratio is invariant under a linear transformation.
- 20. State and prove Cauchy's stronger theorem for rectangles.
- 21. (a)State and prove the maximum principle.
 - (b) Let f(z) be analytic in a region Ω and $a\in\Omega$ such that $|f(a)|\leq |f(z)|$ for every $z\in\Omega$ then prove that either f(a)=0 or f(z) is a constant.
- 22. Evaluate $\int_0^\infty \frac{x^{2m}dx}{x^{2n}+1}$; n>m.

(2×5=10 weightage)