

19001686

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, JUNE 2019

Second Semester

Faculty of Science

Branch I (a): Mathematics

MTO 2C 06—ABSTRACT ALGEBRA

(2012 Admission onwards)

Time: Three Hours Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. A polynomial may be irreducible over a field but may not be irreducible if viewed over a larger field—Give example.
- 2. Define torsion subgroup and find a torsion subgroup of $z \times z_2$.
- 3. A finite extension field E of a field F is an algebraic extension of F—Prove.
- 4. Prove: Squaring the circle is impossible.
- 5. State isomorphism extension theorem.
- 6. Obtain necessary and sufficient condition for a finite group G to be a *p*-group.
- 7. Obtain the splitting field of $x^3 2$ over Q.
- 8. If E is the finite extension of F, show that {E : F} divides [E : F].

 $(5\times 1=5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. State and prove the Lemma describing, upto isomorphism, of all finite Abelian groups.
- 10. State and prove division algorithm.
- 11. If α and β are constructable real numbers, show that $\alpha\beta$ and α/β if $\beta \neq 0$ are also constructable.
- 12. State the required Lemma and show that a finite field GF (p^n) of p^n elements exists for every prime power p^n .
- 13. Obtain the order of the group $G\left(Q(\sqrt{2},\sqrt{3})/Q\right)$.

Turn over

19001686

- 14. Use Sylow theorems to show that no group of order IS is simple.
- 15. Find the degrees of the splitting fields $Q(\sqrt[3]{2}, i\sqrt{3})$ and $Q(\sqrt[3]{2}, i, \sqrt{3})$.
- 16. State the main theorem of Galois theory.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. Obtain necessary and sufficient conditions for a group to be the internal direct product of subgroups H and K.
- 18. Characterise the maximal ideals of F[x].
- 19. Establish Kronecker's theorem on extension fields. Illustrate the construction involved in the proof of the theorem by an example.
- 20. Define (i) A finite extension field E of a field and an algebraic extension of a field; (ii) If E is a finite extension field of a field F and K is a finite extension field of E prove that K is a finite extension of F and [K:F] = [K:E][E:F].
- 21. State and prove the theorem on basic isomorphism of algebraic field theory. Deduce that complex zeros of polynomials with real coefficient occur in conjugate pairs.
- 22. If K is a finite extension of E and E is a finite extension of F show that K is separable over F if and only if K is separable over E and E is separable over F. Also prove that if E is a finite extension of F, then E is separable over F if and only if each α in E is separable over F.

 $(3 \times 5 = 15)$

