

QP CODE: 24018739

Reg No	:	***********
Name		

MSc DEGREE (CSS) EXAMINATION , APRIL 2024 Second Semester CORE - ME010201 - ADVANCED ABSTRACT ALGEBRA

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
A7863F8E

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Check lpha=1+i is algebraic or transcendental over $\mathbb R$. If algebraic, find $deg(lpha,\mathbb R)$
- 2. Find the primitive 10^{th} roots of unity and primitive 5^{th} roots of unity in \mathbb{Z}_{11}
- 3. State Ascending Chain Condition for a PID.
- 4. Show with an example that not every UFD is a PID.
- 5. Define a Euclidean domain. Give an example.
- 6. Find all conjugates in $\mathbb C$ of $\sqrt{1+\sqrt{2}}$ over $\mathbb Q$.
- 7. Let $E=\mathbb{Q}(\sqrt{2})$ and $\sigma:E o E$ defined by $\sigma(a+b\sqrt{2})=a-b\sqrt{2}$ for $a,b\in\mathbb{Q}$. Find the fixed field of σ .
- 8. Define splitting field of a set of polynomials over a field F. Give an example.
- 9. Define group of a polynomial over a field.
- 10. Define symmetric function over a field F.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Define algebraic and finite extension of a field. Prove that a finite extension of a field F is an algebraic extension.
- 12. State and prove fundamental theorem of Algebra.
- 13. Applying Euclidean algorithm find the gcd of 22,471 and 3,266.

- 14. Factor the given Gaussian integers into a product of irreducibles in $\mathbb{Z}[i]$
 - (a) 5 (b) 4 + 3i
- 15. Describe all extensions of the automorphism $\psi_{\sqrt{3},-\sqrt{3}}$ of $\mathbb{Q}(\sqrt{3})$ to an isomorphism mapping $\mathbb{Q}(i,\sqrt{3},\sqrt[3]{2})$ onto a subfield of $\overline{\mathbb{Q}}$.
- 16. If $E \leq \overline{F}$ is a splitting field over a field F, prove that every isomorphic mapping of E onto a subfield of \overline{F} and leaving F fixed is actually an automorphism of E. Further prove that if E is a splitting field of finite degree over F, then $\{E:F\}=|G(E/F)|.$
- 17. If E is a finite extension of a field F, then prove that $\{E:F\}$ divides [E:F].
- 18. Let E be a finite separable extension of a field F. Prove that there exists an $lpha \in E$ such that E = F(lpha).

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Prove that the field F of constructible real numbers consists precisely of all real numbers that we can obtain from \mathbb{Q} by taking square roots of positive numbers a finite number of times and applying a finite number of field operations.
- 20. a) Prove that every PID is a UFD.
 - b) If D is a UFD, then prove that for every nonconstant f(x) in D[x], f(x) = (c)g(x), where c belongs to D and g(x) in D[x] is primitive. Also prove that the element c is unique upto a unit factor in D and g(x) is unique upto a unit factor in D.
- 21. a) State and prove the isomorphism extension theorem.

 b) Let \overline{F} and \overline{F}' be two algebraic closures of a field F. Prove that \overline{F} is isomorphic to \overline{F}' under an isomorphism leaving each element of F fixed.
- 22. Prove the following.
 - a) Every field of characteristic zero is perfect.
 - b) Every finite field is perfect.

(2×5=10 weightage)