

QP CODE: 24018933

Reg No :

Name :

MSc DEGREE (CSS) EXAMINATION , APRIL 2024

Second Semester

CORE - CH500203 - CHEMICAL BONDING AND COMPUTATIONAL CHEMISTRY

M Sc ANALYTICAL CHEMISTRY,M Sc APPLIED CHEMISTRY,M Sc CHEMISTRY,M Sc POLYMER CHEMISTRY

2019 Admission Onwards

C76F2885

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Calculate the total character and write down the reducible representation for NH₃ molecule.
- 2. Based on orbital selection rule, predict whether B_1 E transition is allowed in C_{4v} point group. Substantiate your prediction.
- 3. What is the need for approximations in Quantum Mechanics?
- 4. Highlight the salient features of perturbation theory.
- 5. Differentiate coulomb operator and exchange operator.
- 6. Draw molecular orbital diagram of F2
- 7. Draw the Huckel molecular energy levels of Allyl Carbocation.
- 8. What are Hohenberg Kohn theorems?
- 9. State three points of differences between ab initio and DFT calculations.
- 10. What is the meaning of force field and parameterizing a forcefield?

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. In the IR and Raman spectra of H₂O molecule 3 peaks are observed. Using group theory, justify this observation.

- 12. What are the possible electronic transitions predicted in C_{2v} point group? (use direct product rules)
- 13. How does variation theory help in estimating the energy of the ground state of helium atom?
- 14. What are Slater type orbitals (STO) and Gaussian type orbitals (GTO), and sketch STO and GTO.
- 15. Discuss on the major differences between Valence Bond theory and Molecular Orbital theory?
- 16. Explain the quantum mechanical treatment of SP³ hybridization.
- 17. Write short notes ona) conformational search b) global minima c) local minima d) saddle points
- 18. Write the Z-matrix of a non linear triatomic and a linear triatomic molecule.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. How does group theory help in deducing the hybridisation of PCI₅ molecule? Derive the hybrid orbitals for this molecule.
- 20. Apply the perturbation theory to evaluate the ground state energy of helium atom.
- 21. Explain valence bond (VB) theory and VB theory of H₂ molecule.
- 22. Write short notes on
 - (a) Ab initio methods
 - (b) Electron correlation
 - (c) Configurational Interaction
 - (d) Moller Plesset Perturbation Theory
 - (e) Semi empirical methods

(2×5=10 weightage)