

QP CODE: 24027207

Reg No :

Name :

B.Sc DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, OCTOBER 2024

Third Semester

Core Course - MM3CRT01 - CALCULUS

Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

467CD5C0

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries 2 marks.

- 1. Using Taylor's series , expand $f(x)=rac{1}{x-1}$ in powers of (x-2).
- 2. Find the points of inflection of the curve $y = 3x^4 4x^3 + 1$.
- 3. Find the centre of curvature of the given point on the curve $y = x^2 (1/2, 1/4)$.
- 4. Define envelope of one parameter family of curves.

5. If
$$f(x,y)=x-y$$
, find $\dfrac{\partial f}{\partial x}$ and $\dfrac{\partial f}{\partial y}$

- 6. Find $\frac{dw}{dt}$ if w = xy, $x = \cos t$, $y = \sin t$.
- 7. Explain the absolute minimum of a continuous function at a point (a,b) defined on a bounded region R.
- 8. Find the volume of the solid of cross sectional area $\ A(x)=2x+1 \ \ ext{from } x=1$ to x=2
- 9. Obtain the volume of solid of revolution generated by rotating the region between the Y-axis and graph of the function x=g(y); $c\leq y\leq d$ about Y-axis.
- 10. If R(y) and r(y) denote the outer and inner radius of cross section of a solid of revolution about Y-axis, with hole at y; $c \le x \le d$. Find the volume of solid.

- Write an equivalent double integral of $\int_0^1 \int_2^{4-2x} dy \, dx$ with the order of integration reversed.
- 12. Write the formula for finding average value of a function f(x,y) over a region R in XYplane ..

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Obtain the expansion of $\log \cosh x$ in powers of x by Maclaurin,s series.
- 14. Find the asymototes parallel to the co-ordinates axes of the curve $(x^2+y^2)x-ay^2=0$.
- 15. Verify that $w_{xy} = w_{yx}$ where $w = x^2 \tan(xy)$.
- 16. Find all local extreme values and saddle point, if any, of the function $f(x,y) = x^3 - y^3 - 2xy + 6.$
- 17. Find the volume of the solid generated by revolving the region bounded by the curves and lines $y=x^2$, y=2-x, x=0 for x \geq 0 about the Y-axis using shell method.
- 18. Find the length of the curve $y=\int_0^x \tan t \ dt, \ 0 \le x \le \pi/6$
- 19. Find the average value $f(x,y,z)=x+y+z\,$ over the cubical region D bounded by the coordinate planes $x=2,y=2 \ {
 m and} \ z=2 \ {
 m in}$ the first octant.
- Evaluate the spherical integral $\int_0^{\pi} \int_0^{\pi/4} \int_0^2 (\rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$.
- 21. Find the image under the transformation $u=3x+2y,\ v=x+4y$ of the triangular region in the XY-plane bounded by the X-axis , Y-axis and the line x+y=1. Sketch the transformed region in the UV-plane.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- a) Find the evolute of the ellipse $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1.$ b) Find the envelope of the line $\dfrac{x}{a}+\dfrac{y}{b}=1$ where the parameters a and b are connected by the relation $a^2+b^2=c^2$.

ATT.

^{23.} (a). If
$$\sin u = \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$.

- (b). Find the maximum and minimum values that the function $f(x,y)=3x+4y\,$ takes on the circle $x^2+y^2=1\,$
- 24. (a). Using the shell method to find the volumes of the solids generated by revolving the regions bounded by the lines and curves

$$y=x+2$$
 ; $y=x^2$ about (i) the X-axis (ii) the line $x=2$.

(b). Find the area of the surface generated by revolving the curve $y=2\sqrt{x}\;;\;1\leq x\leq 2\;$ about the X-axis.

25. (a). Evaluate
$$\int_0^1 \int_0^{1-x^2} \int_3^{(4-x^2-y)} \, x \, dz \, dy \, dx$$

(b). Evaluate the cylindrical coordinate integral $\int_0^{2\pi} \int_0^1 \int_r^{\sqrt{2-r^2}} dz \, r \, dr \, d\theta$ (2×15=30)