

QP CODE: 24028956

Reg No

:

Name

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, OCTOBER 2024

Fifth Semester

CORE COURSE - CH5CRT08 - PHYSICAL CHEMISTRY - II

Common for B.Sc Chemistry Model I, B.Sc Chemistry Model II Industrial Chemistry & B.Sc Chemistry Model III Petrochemicals

2017 Admission Onwards

855FAF82

Time: 3 Hours

Max. Marks: 60

Part A

Answer any ten questions.

Each question carries 1 mark.

- 1. In terms of the Bohr atom model, specify the ratio of radii of first three orbits of hydrogen atom.
- Write the expression for the Laplacian operator.
- List the quantum numbers that needed to specify an atomic orbital.
- What are the permitted values of quantum number I for a principal quantum number n = 3?
- 5. Construct the Hamiltonian for the hydrogen molecule-ion by applying the Born-Oppenheimer approximation.
- 6. Give the relationship between the energy of a radiation with its (a) frequency (b) wavelength.
- Name the region of electromagnetic radiation used for electronic transitions.
- In terms of vibrational spectroscopy, define the zero point energy.
- 9. Stokes lines are much more intense than Anti-stokes lines. Give reason.
- 10. What is a chromophore?
- 11. How is the magnitude of the nuclear magnetic moment of a nucleus related to its spin quantum number?
- 12. What is meant by the term 'spin flipping'?

 $(10 \times 1 = 10)$

- 13. A sodium lamp emits yellow light (550 nm). How many photons does emit each second if its power is (a) 1.0 W, (b) 100 W?
- 14. Write a note on the wave-particle duality of electron.
- 15. What are well-behaved functions? Describe and justify the Born interpretation of the wavefunction.
- 16. Pictorially represent and discuss, in terms of LCAO method, the combination of two 1s atomic orbitals.
- 17. In vibrational spectroscopy, How does an overtone differ from the fundamental?
- 18. What is the finger print region? Discuss its significance in the spectral study of organic compounds.
- 19. Explain the Franck-Condon principle, in the context of electronic spectroscopy.
- 20. Explain the nuclear shielding and the deshielding as applied to the NMR spectroscopy.
- 21. Explain the origin of hyperfine structure in the ESR absorptions. Give the ESR spectrum of methyl radical.

 $(6 \times 5 = 30)$

Part C

Answer any **two** questions.

Each question carries **10** marks.

- 22. (a) Solve Schrodinger equation for particle in one-dimensional box with the potential energy value zero inside the box and obtain the expressions for normalized wavefunction and energy.
 - (b) Calculate the wavelength of light that will be absorbed when a p electron in hexa-1,3,5-triene is promoted from the highest occupied level to the lowest unoccupied level. The average C-C bond length in hexatriene can be taken as 144 pm.
- 23. Discuss the important features of MO theory and LCAO method. Illustrate the formation of the σ , σ^* , π and π^* MO's.
- Discuss the principle and applications of microwave spectroscopy.
- (a) Compare and contrast pure vibrational spectroscopy and pure Raman vibrational spectroscopy.
 - (b) Outline the advantages and limitations of Raman spectroscopy over other spectroscopic techniques.

 $(2 \times 10 = 20)$