

QP CODE: 24035580

Reg No

Name

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, OCTOBER 2024

Fifth Semester

CORE COURSE - MM5CRT03 - ABSTRACT ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

186FC449

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions. Each question carries 2 marks.

- Check whether the usual multiplication is a binary operation on the set \mathbb{R}^+ .
- State whether True or False: 2.
 - a) "Each element of a group appear once and only once in each row and column of the group table".
 - b) "There is only one group of three elements, upto isomorphism".
- Define a cyclic group. 3.
- Find the number of elements in the set $\{\sigma \in S_4 | \sigma(3) = 3\}$.
- Find all orbits of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 2 & 4 & 8 & 3 & 1 & 7 \end{pmatrix}$. 5.
- Find the index of < 3 > in the group \mathbb{Z}_{24} .
- Define the direct product of the groups G_1, G_2, \cdots, G_n . 7.
- Let G be a group and H be normal subgroup of G. Find the identity element in the factor group G/H.
- Show that S_n is not a simple group when $n \ge 3$.
- 10. Show that the matrix $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ is a divisor of zero in M2(Z).
- Prove that Zp is a field if p is a prime. 11.
- Mark each of the following true or false. 12.
 - a) A ring homomorphism $\phi:R o R'$ carries ideals of R into ideals of R'
 - b) A ring homomorphism is one to one if and only if the kernel is { 0 }.

Page 1/3

Turn Over

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Check whether $\langle \mathbb{C},\cdot \rangle$ and $\langle \mathbb{R},\cdot \rangle$ under usual multiplication are isomorphic.
- 14. Define subgroup of a group. Give two examples.
- 15. Find the quotient q and remainder r when -50 is divided by 8 according to the division algorithm.
- 16. Prove from linear algebra that no permutation in S_n can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
- 17. Prove that for $n \geq 2$, the number of even permutations in S_n is the same as the number of odd permutations. Define the alternating group A_n on n letters.
- 18. Show that composition of group homomorphisms is again a group homomorphism.
- 19. Let G be a group. Show that Inn(G) the set of all inner automorphisms of G is anormal subgroup of Aut(G), the group of all automorphisms of G.
- Prove that 1) 0.a = a.0 = 0 2) a (-b) = (-a) b = -(ab) 3) (-a) (-b) = ab where R is a ring with additive identity 0, and $a, b \in R$.
- 21. Let N be an ideal of a ring R . Prove that $\gamma:R\to R/N$ given by $\gamma(x)=x+N$ is a ring homomorphism with kernel N.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. a) Define an abelian group.
 - b) Show that the subset S of M_n (R) consisting of all invertible $n \times n$ matrices under matrix multiplication is a group.

Also check whether it is an abelian group.

- c) Prove that $\langle \mathbb{Q}^+, *
 angle$ is a group where, * is defined by a*b=ab/2 .
- 1. Let H be a subgroup of a group G. Let the relation \sim_R be defined on G by $a\sim_R b$ if and only if $ab^{-1}\in H$. Then show that \sim_R is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a\in G$?
 - 2. Let H be a subgroup of a group G. Then define the left and right cosets of H containing $a \in G$.

- 3. Let H be the subgroup $<\mu_1>=\{\rho_0,\mu_1\}$ of S_3 . Find the partitions of S_3 into left cosets of H.
- 24. State and prove fundamental homomorphism theorem.
- 25. a) Let p be a prime . Show that in a ring Zp , $\,$ (a + b)p = $\,$ ap + $\,$ bp $\,$ for all $a,b\in Z_p$
 - b) Show that if a and b are nilpotent elements of a commutative ring , then a + b is also nilpotent.
 - c) Show that intersection of subrings of a ring R is again a subring of R.

 $(2 \times 15 = 30)$