

QP CODE: 24044651

Reg No :

M.Sc DEGREE (CSS) EXAMINATION, OCTOBER 2024

Third Semester

M.Sc MATHEMATICS, M.Sc MATHEMATICS (SF)

CORE - ME010301 - ADVANCED COMPLEX ANALYSIS

2019 ADMISSION ONWARDS

AF6C7C78

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Define a symmetric region and give an example.
- 2. What do you mean by the mean value propery of a real valued function u(z) in a region Ω ?
- 3. Write the Taylor's series expansions of e^z and sinz about the origin.
- 4. Define Canonical product.
- 5. Prove that $\Gamma(z)\Gamma(1-z)=rac{\pi}{sin\pi z}$.
- 6. Define Riemann zeta function. Also check whether the number of primes is finite or not.
- 7. Using Riemann functional equation prove $\zeta(1-s)=2^{1-s}\pi^{-s}cos(\frac{\pi s}{2})\Gamma(s)\zeta(s)$.
- 8. Where do the zeros of zeta function lie in the complex plane?
- 9. What is meant by the boundary behavior?
- 10. Prove that $\frac{\sigma'(z)}{\sigma(z)} = \zeta(z)$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. State and prove maximum principle for harmonic functions.
- 12. State and prove Schwarz theorem.

- 13. Write the general form of a Laurent series for f(z) which is analytic in the annulus $R_1<|z-a|< R_2$. Derive the Laurent series of $f(z)=rac{e^z}{(z+1)^2}$ about z=-1.
- 14. State Mittag-Leffler's theorem. Prove that $\pi cosec\pi z = \lim_{n \to \infty} \sum_{n=-m}^m (-1)^n \frac{1}{z-n}$.
- 15. Define normal family and totally bounded family of functions. Prove that a sequence of functions converges uniformly to f on compact subsets if and only if it converges to f with respect to ρ .
- 16. If a family $\mathcal F$ of continuous functions with values in a metric space S is normal in a region Ω of the complex plane then prove that $\mathcal F$ is equicontinuous on every compact subsets of Ω .
- 17. Prove that a non constant elliptic function has equally many zeros and poles.
- 18. Prove that $\zeta(z+u) = \zeta(z) + \zeta(u) + \frac{1}{2} \frac{\wp'(z) \wp'(u)}{\wp(z) \wp(u)}$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions. Weight 5 each.

- 19. Define a subharmonic function. State and prove any three properties.
- Obtain Jensen's formula. Deduce Poisson-Jensen formula.
- (ii) Prove that the Zeta function can be extended to the whole plane as a meromorphic function having a 21. (i) Describe the Riemann Zeta function. single, simple pole at s=1.
 - (iii) Find the residue of the Zeta function at $s=1.\,$
- 22. (a) Prove that any simply connected region other than the complex plane is topologically equivalent to the unit disk.
 - (b) Prove that the Riemann mapping is unique.

(2×5=10 weightage)