Liborery

QP CODE: 24044653

Reg No

Name :

M.Sc DEGREE (CSS) EXAMINATION, OCTOBER 2024

Third Semester

M.Sc MATHEMATICS, M.Sc MATHEMATICS (SF)

CORE - ME010302 - PARTIAL DIFFERENTIAL EQUATIONS

2019 ADMISSION ONWARDS

6BDA4900

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

-Answer any eight questions.

Weight 1 each.

- 1. Find the integral curves of $\frac{dx}{x^2(y^3-z^3)}=\frac{dy}{y^2(z^3-x^3)}=\frac{dz}{z^2(x^3-y^3)}$
- 2. Verify that the equation yz(y+z) dx + xz(x+z) dy + xy(x+y) dz = 0 is integrable.
- 3. What is the general form of the linear partial differential equation in n variables. Explain how a general solution of this equation is found.
- 4. Verify that the equation $z=\sqrt{(2x+a)}+\sqrt{2y+b}$ is a complete integral of the partial differential equation $z=\frac{1}{p}+\frac{1}{q}$.
- 5. What is meant by compatible systems of first order equations? State the condition under which the partial differential equations f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 are compatible?
- 6. Find the complementary function of $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = x y$.
- 7. Prove $F(D,D^\prime)e^{ax+by}=F(a,b)e^{ax+by}.$
- 8. Find the particular integral of $[D^2-D^\prime]z=2y-x^2$.
- 9. Establish a formula for finding the potential function of a family of equipotential surfaces.
- 10. Show that the real and imaginary parts of an analytic function are harmonic

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Find the equations of the system of curves on the cylinder $2y = x^2$ orthogonal to its intersections with the hyperboloids of the one-parameter system xy = z + c

12. Eliminate the arbitrary function f from the given equations.

a)
$$f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$$

b)
$$z = xy + f(x^2 + y^2)$$

- 13. Find a complete integral of the equation $p^2x+q^2y=z$.
- 14. Show that the differential equation $2xz + q^2 = x(xp + yq)$ has a complete integral $z + a^2x = axy + bx^2$ and deduce that $x(y + hx)^2 = 4(z kx^2)$ is also a complete integral.
- 15. By Jacobi's method, solve $z^2 = pqxy$.
- 16. Verify that the PDE $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \frac{2z}{x^2}$ is satisfied by $z = \frac{1}{x}\phi(y-x) + \phi'(y-x)$.
- 17. By separating the variables show that the equation $\nabla_1^2 V=0$ has solutions of the form $Aexp(nx\pm iny)$ where A and n are constants. Deduce that the functions of the form $V(x,y)=\sum_r A_r e^{\frac{-r\pi x}{a}} sin\frac{r\pi y}{a}$, $x\geq 0, 0\leq y\leq a$ where $A'_r s$ and $B'_r s$'s are constants, are the plane harmonic functions satisfying the conditions $V(x,y)=0, V(x,a)=0, V(x,y)\to 0$ as $x\to\infty$
- 18. Show that in cylindrical coordinates ho,z,ϕ , the Laplace's equation has solutions of the form $R(
 ho)exp(\pm mz\pm in\phi)$ where R(
 ho) is a solution of Bessel's equation $rac{d^2R}{ds^2}+rac{1}{
 ho}rac{dR}{d\phi}+(m^2-rac{n^2}{
 ho^2})R=0.$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Prove the following.
 - à) A Pfaffian differential equation in two variables always possesses an integrating factor.
 - b) A necessary and sufficient condition that there exists between two functions u(x,y) and v(x,y) a relation F(u,v)=0 not involving x or y explicitly is that $\frac{\partial(u,v)}{\partial(x,y)}=0$.
- 20. a) Find the general solution of the equation $2x(y+z^2)p+y(2y+z^2)q=z^3$ and deduce that $yz(z^2+yz+-2y)=x^2$ is a solution.
 - b) Find the general integral of the equation (x-y)p + (y-x-z)q = z and the particular solution through the circle $z=1, x^2+y^2=1$.
- 21. Reduce the equation to canonical form and solve $u_{xx}+2u_{xy}+u_{yy}=0$.
- 22. (a) State and prove the necessary condition that a family of surfaces f(x,y,z)=c is a family of equipotential surfaces.
 - (b) Show that the surfaces $(x^2 + y^2)^2 2a^2(x^2 y^2) + a^4 = c$ can form a family of equipotential surfaces and find the general form of the corresponding potential function.

(2×5=10 weightage)