

QP CODE: 24044655

Reg No :

M.Sc DEGREE (CSS) EXAMINATION, OCTOBER 2024

Third Semester

M.Sc MATHEMATICS, M.Sc MATHEMATICS (SF)

CORE - ME010303 - MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

2019 ADMISSION ONWARDS

CB7D0E57

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Find the Fourier Series for $f(x) = 4x, 0 < x < 2\pi$
- 2. Show by an example that Lebesgue integrability of f and g alone will not give a convolution integral of f and g.
- 3. Define total derivative of a function $\mathbf{f}: S \to \mathbf{R}^m$, $S \subseteq \mathbf{R}^n$. Show that if \mathbf{f} is differentiable at \mathbf{c} , then \mathbf{f} is continuous at \mathbf{c} .
- 4. Give matrix representation for a linear function $T: \mathbf{R}^n o \mathbf{R}^m$.
- 5. Let $\mathbf{f}: S \to \mathbf{R}^m$ be differentiable at each point of an open connected subset S of \mathbf{R}^n . Show that if $\mathbf{f}'(\mathbf{c}) = 0$; $\forall c \in S$, then \mathbf{f} is constant on S.
- 6. Define Jacobian determinant and find the Jacobian determinant for the function $f(z)3z^2+z$
- 7. Define open mapping. State and prove a sufficient condition for a mapping to carry open sets onto open sets.
- 8. Define a Stationary point and a Saddle point.
- 9. Let $G(x) = \sum_{i \neq m} x_i e_i + g(x) e_m$, $x \in E$ be a primitive mapping and $(D_m g)(a) \neq 0$. Prove that G'(a) is invertible.
- 10. Define k- form in $E \subseteq \mathbb{R}^n$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. State and prove Weierstrass Approxiamation Theorem for real valued and continuous functions on compact interval.
- 12. If p>0,q>0 , prove that the beta function can be expressed using gamma function as $\mathcal{B}(p,q)=rac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$
- 13. a. Show that if $f(x) = \|x\|^2$ and $F(t) = f(\mathbf{c} + t\mathbf{u})$, then $F'(t) = 2\mathbf{c} \cdot \mathbf{u} + 2t\|\mathbf{u}\|^2$. b. Calculate all partial derivatives and directional derivatives of $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$; $\mathbf{a} \in \mathbb{R}^n$ defined on \mathbf{R}^n .
- 14. a. Define matrix of a linear function, T: Rⁿ → R^m.
 b. Define Jacobian matrix. Explain how Jacobian matrix is related to the gradient vector.
- 15. State inverse function theorem and implicit function theorem .
- 16. (a) Define stationary point and saddle point of a function from $R^n \to R$ (b) Find the saddle point of the function $f(x,y)=x^2-4xy+y^2+6y+2$

17. Define support of a function f on \mathbb{R}^k . Also show that for every $f \in C(I^k)$, L(f) = L'(f).

18. (a)If $\gamma(t)=(acost,bsint),\ 0\leq t\leq 2\pi\,then\ find\ \int_{\gamma}xdy\ and\ \int_{\gamma}ydx.$ (b)Let γ be a 1-surface in R^3 with parameter domain [0,1] and $\omega=xdy+ydx$. Then prove that $\int_{\gamma}\omega$ depends only on the endpoint of the curve $\boldsymbol{\gamma}$ (6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions. Weight 5 each.

- 19. State and prove the Exponential form of Fourier Integral Theorem.
- 20. State and prove the chain rule.
- 21. Assume that one of the partial derivatives $D_1f,D_2f,\ldots D_nf$ exist at c and the remaining n-1 partial derivatives exist in some n- ball B(c) and are continuous at c . Prove that f is differentiable at c
- 22. Suppose F is a C' mapping of an open set $E \subset R^n$ into R^n , $0 \in E$, F(0) = 0 and F'(0) is invertible. Then there is a nbd of 0 in \mathbb{R}^n in which $F(x) = B_1 B_2 \dots B_{n-1} G_n \circ \dots \circ_1 G(x)$. (2×5=10 weightage)