

QP CODE: 24044657



Reg No

Name

# M.Sc DEGREE (CSS) EXAMINATION, OCTOBER 2024

#### **Third Semester**

M.Sc MATHEMATICS, M.Sc MATHEMATICS (SF)

## CORE - ME010304 - FUNCTIONAL ANALYSIS

2019 ADMISSION ONWARDS

3B7DD300

Time: 3 Hours

Weightage: 30

## Part A (Short Answer Questions)

Answer any eight questions. Weight 1 each.

- State the completion theorem of metric space.
- If Y and Z are subspaces of a vectorspace X, then show that  $\,Y\cap Z$  is a subspace of X. 2.
- Prove that the inverse of a linear operator T exists if and only if null space of T is equal to  $\{0\}$ .
- Prove that the null space of a linear operator is closed.
- Let X and Y be finite dimensional vector spaces over the same field and T:X o Y be a linear operator. Prove that T determines a unique matrix with respect to a basis for X.
- 6. Define an inner product space. Give an Example.
- 7. Write, Euler formulas for finding the fourier coefficients.
- 8. State Riesz representation theorem.
- 9. Define Hilbert-adjoint operator. Let  $H_1$  and  $H_2$  are Hilbert spaces and  $S,T\in B(H_1,H_2)$  then prove that  $(S+T)^*=S^*+T^*$
- Define self-adjoint, unitary and normal operators. Prove that a normal operator need not be self-adjoint or 10 unitary.

(8×1=8 weightage)

### Part B (Short Essay/Problems)

Answer any six questions. Weight 2 each.

11. Show that (i)  $x_n o x, y_n o y$  implies  $x_n + y_n o x + y$ . (ii)  $lpha_n o lpha$  and  $\ x_n o x$  implies  $lpha_n x_n o lpha x$  .



- Define a bounded linear operator on a normed space and prove that  $\|T\|=\sup\{\|Tx\|/x\in D(T),\|x\|=1\}$ . Also show that this alternate formula for norm satisfies all the conditions of a norm.
- 14. Let f:C[a,b] o R be a function defined by  $f(x)=\int_a^b x(t)dt$ . Is f a bounded linear functional on C[a,b]? Justify
- 15. Let Y be a closed subspace of a Hilbert space H. Prove that  $Y=Y^{\perp\perp}$ .
- 16. Let X be the inner product space of all real valued continuous functions on  $[0,2\pi]$  with inner product defined by  $\langle x,y\rangle=\int_0^{2\pi}x(t)y(t)\ dt$ . Show that  $u_n(t)=\cos(nt)$  is an orthogonal sequence in X.
- Prove that in every Hilbert space  $H 
  eq \{0\}$ , there exists a total orthonormal set.
- 18. Let E be an ordered basis of the n-dimensional Euclidean space  $\mathbb{R}^n$  and T be a linear operator on  $\mathbb{R}^n$ . If T is represented by the matrix  $T_E$ , then prove that the adjoint operator  $T^{\times}$  is represented by the transpose of  $T_E$ .

(6×2=12 weightage)

#### Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. (i) When do you say that two norms are equivalent on a vector space X.
  - (ii) Prove that on a finite dimensional vector space X, any two norms are equivalent.
  - (iii) If two norms  $||.||,||.||_0$  on a vector space X are equivalent, show that  $||x_n-x||\to 0$  if and only if  $||x_n-x||_0\to 0$ .
- 20. i)Show that the dual space of  $l^1$  is  $l^\infty$  ii)Show that dual space  $X^l$  of a normed space X is a Banach space.
- 21. Let H be a Hilbert space.
  - a) Prove that if H is separable, every orthonormal set in H is countable.
  - b) Prove that if H contains an orthonormal sequence which is total in H, then H is separable.
- 22. State and prove Hahn-Banach theorem for complex vector spaces.

(2×5=10 weightage)