

QP CODE: 24045341

Reg No :

M.Sc DEGREE (CSS) EXAMINATION, DECEMBER 2024

First Semester

CORE - ME010103 - BASIC TOPOLOGY

M.Sc MATHEMATICS,M.Sc MATHEMATICS(SF)
2019 ADMISSION ONWARDS
D33CA44C

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Define a metric space on a non empty set. Give an example of a metric which is translation invariant.
- 2. Define a Sierpinskis space. What is its peculiarity?
- 3. Define subspace of a topological space. Give example of two topologies on X such that for a subset Y of X ,the subspace topology on Y and its complement X-Y are the same.
- 4. Define Closed set, Clopen set and Dense set of a topological space.
- 5. Define neighborhood of a point and interior point of a set.
- 6 Define homeomorphism.
- 7 Let X be a Lindeloff space and A be a closed subset of X . Prove that A in its relative topology is Lindeloff.
- Let X be a space and C be a connected subset of X. Suppose C

 A ∪ B where A and B are mutually separated subsets of X.
 Prove that either C

 A or C

 B.
- g Give an example of a normal space which is not regular.
- 10. Write down the equivalent conditions of normality.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Show that for a second countable space every open cover of it has a countable subcover
- 12. Let (X,τ) be a topological space. Show that $S \subset \tau$ is a sub base for τ if and only if S generate the topology τ

- 13. Let $\{f_i:X \to Y_i/i \in I\}$ be a family of functions from a set X to a family of topological spaces $\{(Y_i,\Im_i)/i \in I\}$. Show that there exists a unique smallest topology \Im on X which makes each f_i continuous.
 - 14. Let $f: X \to Y$ be a quotient map, where X, Y are topological spaces. Then prove that a subset A of Y is open in the quotient topology if and only if $f^{-1}(A)$ is open in X.
 - 15. Define a second countable space and a first countable space .Prove the relation between them.
 - Prove that closure of a connected subset is connected
 - 17. Show that complement of a countable set in \mathbb{R}^2 is connected
 - 18. Give and establish four equivalent conditions for T_l space

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Define convergence of sequence in a topological space. How convergence of sequence behaves in Indiscrete ,Discrete and Cofinite topologies on a set X?
- 20. Let f: X → Y be a function, where ℑ, U be topologies on X, Y respectively. Then prove that the following statements are equivalent.(i) f is continuous. (ii) for all V ∈ U, f⁻¹(V) ∈ ℑ. (iii) for any closed subset A of Y, f⁻¹(A) is closed in X. (iv) for all A ⊆ X. f(Ā) ⊆ f(A).
- 21. (i) Let (X, τ) be a topological space and A be a subset of X. Prove that A is a Lindeloff subset of X if and only if the space $(A, \tau_{|A})$ is Lindeloff.
 - (ii) Prove that every second countable space is Lindeloff.
- 22. Show that quotient space of a locally connected space is locally connected

(2×5=10 weightage)