

QP CODE: 24045343

Reg No :

M.Sc DEGREE (CSS) EXAMINATION, DECEMBER 2024

First Semester

CORE - ME010104 - REAL ANALYSIS

M.Sc MATHEMATICS,M.Sc MATHEMATICS(SF)
2019 ADMISSION ONWARDS
686C6D58

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. If f is of bounded variation on [a,b], say $\sum |\Delta f_k| \leq M$ for all partitions of [a,b], then prove that f is bounded on [a,b]. Also show that $|f(x)| \leq |f(a)| + M$, for all $x \in [a,b]$.
- 2. Define total variation. Prove that $0 \leq V_f < \infty$ and $V_f = 0$ if and only if f is a constant on [a,b] .
- 3. Define upper and lower Riemann integral.
- 4. Show that $\int_a^b f d\alpha \leq \int_a^{\bar{b}} f d\alpha$.
- 5. State the fundamental theorem of calculus for vector valued functions.
- 6. Give an example to show that limit processes cannot be interchanged in general for sequence of functions.
- 7. Is every uniformly convergent sequence of functions pointwise convergent? What about the converse?
- 8. Under what conditions, a sequence $\{f_n\}$ of continuous functions defined on a compact set K, is convergent uniformly to a continuous function f?
- 9. If K is compact, if $f_n \in \mathscr{C}(K)$ for $n=1,2,3,\ldots$, and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then prove that $\{f_n\}$ is uniformly bounded on K.
- Define the exponential function using power series. State and prove addition formula for the exponential function.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Let f be continuous on [a, b]. Then prove that f is of bounded variation on [a, b] if, and only if, f can be expressed as the difference of two strictly increasing continuous functions.

- 12. Let $\mathbf{f}:[a,b]\to\mathbb{R}^n$ and $\mathbf{g}:[c,d]\to\mathbb{R}^n$ be two paths in \mathbb{R}^n , each of which is one to one on its domain. Then prove that \mathbf{f} and \mathbf{g} are equivalent if and only if they have the same graph.
- 13. If $f \in \mathcal{R}(\alpha)$ on [a, b] and if c is a positive constant then show that (i) $f \in \mathcal{R}(c\alpha)$ and. (ii) $\int_a^b fd(c\alpha) = c \int_a^b fd\alpha$.
- 14. Suppose φ is a strictly increasing continuous function that maps an interval [A,B] onto [a,b]. Suppose α is monotonically increasing on [a,b] and $f \in \mathcal{R}(\alpha)$ on [a,b]. Define β and g on [A,B] by $\beta(y) = \alpha(\varphi(y))$, $g(y) = f(\varphi(y))$. Then prove that $g \in \mathcal{R}(\beta)$ and $\int_A^B g d\beta = \int_a^b f d\alpha$.
- 15. Suppose $\lim_{n\to\infty}f_n(x)=f(x),\ (x\in E)$ and $M_n=\sup_{x\in E}|f_n(x)-f(x)|.$ Then prove that $f_n\to f$ uniformly on E if and only if $M_n\to 0$ as $n\to\infty.$
- 16. Let α be monotonically increasing on [a,b]. Suppose $f_n\in\mathscr{R}(\alpha)$ on [a,b], for $n=1,2,3,\ldots$ and suppose $f_n\to f$ uniformly on [a,b]. Then prove that $f\in\mathscr{R}(\alpha)$ on [a,b].
- 17. Prove by an example that for a uniformly bounded sequence of continuous functions, there need not exist a pointwise convergent subsequence, even if the domain is compact.
- 18. If the two series $\sum a_n x^n$ and $\sum b_n x^n$ converges in S=(-R,R), $E=\{x\epsilon S:\sum a_n x^n=\sum b_n x^n\}$ and E has a limit point in S then prove that the given series is identical.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (i) Explain rectifiable paths and arc lengths with examples.
 - (ii) Let f and g be complex valued functions defined as follows : $f(t)=e^{2\pi it}$ if $t\in[0,1]$ and $g(t)=e^{4\pi it}$ if $t\in[0,1]$. Then prove that the length of g is twice that of f.
 - (iii) Let $f:[a,b] o \mathbb{R}^n$. Then prove that f is rectifiable if and only if each of the components f_k of f is of bounded variation on [a,b].

Also prove that if f is rectifiable then

$$V_k(a,b) \leq \Lambda_f(a,b) \leq V_1(a,b) + \cdots + V_n(a,b), \qquad k=1,2,\ldots,n,$$
 where $V_k(a,b)$ denotes the total variation of f_k on $[a,b]$

- 20. (i) If f is continuous on [a, b] then show that f ∈ R (α).
 (ii) If f is monotonic on [a, b] and if a is continuous on [a, b] then prove that f ∈ R(α).
- 21. Prove the existence of a real continuous function on the real line which is nowhere differentiable.
- 22. If g is a continuous complex function on [0, 1], prove that there exists a sequence of polynomials P_n such that $\lim_{n\to\infty}P_n(x)=g(x)$ uniformly on [0, 1].

(2×5=10 weightage)