

QP CODE: 24045541

Reg No

Name

M.Sc DEGREE (CSS) EXAMINATION, DECEMBER 2024

First Semester

CORE - CH500104 - THERMODYNAMICS, KINETIC THEORY AND STATISTICAL THERMODYNAMICS

M.Sc CHEMISTRY, M.Sc ANALYTICAL CHEMISTRY, M.Sc POLYMER CHEMISTRY, M.Sc APPLIED CHEMISTRY, M.Sc PHARMACEUTICAL CHEMISTRY

2019 ADMISSION ONWARDS

770DF53A

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions. Weight **1** each.

- 1. What is meant by free energy? Why are free energy functions needed for a system?
- 2. What is meant by chemical potential and explain its significance?
- "Mixing of ideal gases is always a spontaneous process" evaluate the statement based on the concept of Free energy of mixing.
- 4. Define chemical affinity. What is its significance?
- 5. Derive RMS velocity from Maxwell's equation for the distribution of molecular velocities.
- 6. How mean free path and collision diameter are related?
- 7. Write a note on the statistical treatment of Boltzmann distribution law.
- 8. Bring out the main features of the quantum theory of heat capacities of gases.
- Classify the following into bosons and fermions: (a) ³He (b) Alpha particle (c) Deuterium (d) Hydrogen molecule (e) Electron (f) Photon.
- 10. Explain the significance of Debye Theory for heat capacity of solids.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Derive the expression showing the variation of fugacity with temperature.

- 12. Discuss Nernst heat theorem and explain how it paves way for the formulation of third law of thermodynamics.
- 13. Bring out the salient features of Maxwell Boltzmann distribution of molecular velocities. Depict the graphical representation and comment on it.
- 14. (a) The total partition function of system is the product of the translational, rotational, vibrational and electronic partition functions. Verify this statement. (b) Discuss on the partition function for hydrogen.
- 15. Derive Bose-Einstein distribution law.
- 16. The free energy change accompanying a given process is -85.77 kJ at 25^oC and -83.68 kJ at 35^oC.
 Calculate the change in enthalpy for the process at 30^oC.
- 17. At what temperature will the RMS velocity of SO₂, H₂ and O₂ be the same as N₂ at 300 K?
- 18. Calculate the vibrational partition function for H_2 at 300 K if $\overline{\nu}$ = 4405 cm⁻¹.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Draw the phase diagram of a three component system of three liquids where one pair is partially miscible and explain the application of Gibbs phase rule into it.
- 20. Explain in detail the transport properties of gas with reference to thermal conductivity.
- 21. Write short notes on
 - (a) Phase-space (b) Microstates (c) Equal-apriori principle (d) Ensembles (e) Thermodynamic probability
- 22. (a) Explain Sakur Tetrode equation (b) How is the third law of thermodynamics formulated from statistical thermodynamics?

(2×5=10 weightage)