

QP CODE: 25010008

Reg No :

B.Sc DEGREE (CBCS) SPECIAL REAPPEARANCE EXAMINATIONS, FEBRUARY 2025 Fifth Semester

CORE COURSE - MM5CRT03 - ABSTRACT ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2022 Admission Only

CCDF9CD1

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Check whether usual multiplication is a binary operation on the set ${\mathbb C}$.
- 2. Write two examples for non structural property of a binary structure $\langle S, *
 angle$.
- Define order of a group.
- 4. Define the symmetric group on n letters. What is its order?
- Define the left regular representation of a group G.
- 6. Define **even** and **odd** permutations. Give examples.
- 7. Define the alternating group A_n on n letters. What is its order?
- 8. Check whether $f:(\mathbb{R},+) o (\mathbb{Z},+)$ defined by $f(x)=\lfloor x \rfloor$, the greatest integer $\leq x$ is a group homomorphism or not.
- 9. Show that S_n is not a simple group when n \geq 3.
- 10. Define a) a commutative ring b) a ring with unity
- 12. Mark each of the following true or false.
 - a) A ring homomorphism $\phi:R o R'$ carries ideals of R into ideals of R'
 - b) A ring homomorphism is one to one if and only if the kernel is { 0 }

 $(10 \times 2 = 20)$

Part B

- 13. Prove that $\langle \mathbb{Q}^+, au
 angle$ is a group, where st is defined by ast b=ab/2 .
- 14. Find the quotient q and remainder r when 38 is divided by 7 according to the division algorithm.
- 15. Find all orders of subgroups of the group \mathbb{Z}_6 .
- 16. Prove that every permutation σ of a finite set is a product of disjoint cycles. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$ in S_8 as a product of transpositions.
- 17. State and prove the theorem of Lagrange.
- 18. Show that composition of group homomorphisms is again a group homomorphism.
- 19. Prove that the factor group of cyclic group is cyclic.
- 20. Prove that $M_n(R)$ is a ring where $M_n(R)$ is the collection of all $n \times n$ matrices having elements of R as entries
- 21. Let N be an ideal of a ring R . Prove that $\gamma:R\to R/N$ given by $\gamma(x)=x+N$ is a ring homomorphism with kernel N.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Let G be a group with binary operation st .Then prove the following:
 - a) The left and right cancellation laws hold in ${\cal G}$.
 - b) The linear equations a*x=b and y*a=b have unique solutions x and y in G, where a and b are any elements of G .
- 1. Let H be a subgroup of a group G. Let the relation \sim_R be defined on G by $a\sim_R b$ if and only if $ab^{-1}\in H$. Then show that \sim_R is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a\in G$?
 - 2. Let H be the subgroup $<\mu_1>=\{\rho_0,\mu_1\}$ of S_3 . Find the partitions of S_3 into left cosets of H, and the partition into right cosets of H.
- 24. Let H be a subgroup of a group G. prove that aHbH=abH defines a binary operation on G/H if and only if H is a normal subgroup of G. Then furthere show that if H is a normal subgroup of a group G then G/H is a group, under the binary operation aHbH=abH.
- 25. a) Prove that the divisors of 0 in Zn are those nonzero elements that are not relatively prime to n.
 - b) Find the divisors of Z_{16}
 - c) Prove that Zp , where p is prime has no divisors of $\,$ 0.