1	-	100	-	200	4	3000	-
2	Sec. 1	4.3	2 3	2 3	7	5-	Sec.
/	- 3	3	2 2	2 2	- 8	. 3	- 1

Reg.No			a	2 8		*			z :	*		*	*					* *				st		
Name	*	n ec	20 1		 •						•		*	•		•			 				*	

MAHATMA GANDHI UNIVERSITY, KOTTAYAM

MGU-UGP (HONOURS) REGULAR EXAMINATION MARCH 2025 SECOND SEMESTER

Discipline Specific Core Course (DSC) - MG2DSCPHY100 - MODERN PHYSICS

(2024 ADMISSION ONWARDS)

Duration: 1.5 Hours

Maximum Marks: 50

Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

Students should attempt at least one question from each course outcome to enhance their overall outcome attainability.

Part A

Short Answer Questions
Answer any 10 questions
Each question carries 2 marks

1.	What is the difference between an inertial and non inertial frame of reference?	[K] / [CO1]
2.	State two postulates of special relativity.	[U] / [CO1]
3.	Explain the mass- energy relation.	[U] / [CO1]
4.	What are the features of a blackbody?	[K] / [CO2]
5.	What is the physical significance of wave function?	[K] / [CO2]
6.	Classify electromagnetic spectrum based on wavelength or frequency.	[U] / [CO2]
7.	In the photoelectric effect, what happens if the frequency of incident light is increased while keeping intensity constant?	[U] / [CO2]
8.	What will be the ratio of de Broglie wavelength of a proton and an electron, if they have the same velocity? The ratio of their mass $m_p/m_e=1836$.	[A] / [CO2]

9.	What is the effect of increasing the principal quantum number on an atom's energy levels?	[K] / [CO3]
10.	An astronomer finds a new absorption line with λ = 164.1 nm in the ultraviolet region of the Sun's continuous spectrum. He attributes the line to hydrogen's Lyman series. Is he right? Justify your answer	[U] / [CO3]
11.	Define stimulated absorption in the context of laser physics.	[U] / [CO4]
12.	Write the steady state form of Schrodinger's equation in three dimensions	[K] / [CO5]
13.	Give the physical interpretation of the wave function.	[U] / [CO5]
14.	A particle is confined in a 1D box of length L. Find the ratio of the energy of the first excited state to the energy of the ground state.	[A] / [CO5]
		[2x10 = 20]
	Part B	
	Short Essay Questions	
	Answer any 6 questions	
	Each question carries 5 marks	
15.	A train moving at 0.6 c has a proper length of 200 m. What is its observed length for a stationary observer?	[U] / [CO1]
16.	A spaceship travels at 0.9 c relative to Earth. If 1 hour passes on the spaceship, how much time passes on Earth?	[A] / [CO1]
17.	Elaborate one example where Classical Physics failed and the new Quantum Physics solved the problem.	[K] / [CO2]
18.	A microscope using photons is employed to locate an electron in an atom to within a distance of 0.2 Angstrom. What is the uncertainty in the momentum of the electron located in this way?	[U] / [CO2]
19.	A metal has a work function of 3 eV. What is the longest wavelength of light that can cause photoelectric emission from this metal?	[A] / [CO2]
20.	Discuss the process of energy absorption and emission in an atom.	[K] / [CO3]
21.	Describe the process of population inversion and its role in the amplification of light in lasers. What methods are used to achieve it?	[U] / [CO4]
22	Given the wave function for a free particle as $\psi=Ae^{(rac{-i}{h})(Et-px)}$.Obtain the time dependent form of Schrödinger equation.	[U] / [CO5]
	and appendent form of companigor equation.	[5x6 = 30]
		[