

QP CODE: 25020810

Reg No :

Name :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE / MERCY CHANCE EXAMINATIONS, FEBRUARY 2025

Sixth Semester

CORE COURSE - MM6CRT01 - REAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science & B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards

56043023

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Give an example of functions f and g that are both discontinuous at a point c in R such that the sum f+g is continuous at c.
- 2. Show that the continuous image of an open interval need not be an open interval.
- 3. Define Monotone function. Show that such functions need not be continuous.
- 4. Define the derivative of a function f at a point c .
- 5. Using the chain rule, find the derivative of $f^n(x)$, where f:I o R is differentiable and $n\geq 2, n\in N$.
- 6. Find $\lim_{x\to 0} \frac{e^x-1}{x}$.
- 7. Find the norm of the partition $\mathcal{P} = \{1, 1.2, 1.65, 2, 2.31, 2.72, 3\}$ of the interval [1, 3].
- 8. Under what circumstances differentiation and Riemann ntegration are inverse to each other.
- 9. State any theorem which characterises Riemann Integrable function on an interval [a,b].
- 10. Evaluate $lim(rac{nx}{1+nx})$ for $x\epsilon R; x\geq 0$.
- 11. Evaluate $lim(e^{-nx})$ for $x \in R, x \geq 0$.
- 12. Give an example of a sequence of continuous functions that converges pointwise to a discontinuous limit.

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Define Dirichlet's function. Show that it is not continuous at any point of R.
- 14. Let a < b < c. Suppose that f is continuous on [a,b], that g is continuous on [b,c], and that f(b) =g(b). Define h on [a,c] by h(x) = f(x) for $x \in [a,b]$ and h(x) = g(x) for $x \in [b,c]$. Prove that h is continuous on [a,c].
- 15. Show that every continuous function on a closed bounded interval I is uniformly continuous on I.
- 16. Let f:R o R defined by $f(x)=\left\{egin{array}{ll} x^2,&x\,is\,rational\\ x,&x\,is\,irrational \end{array}
 ight.$ Prove that f is differentiable at x=0 .
- 17. State and prove Rolle's theorem.
- 18. Using Mean value theorem, Prove that $|\sin x \sin y| \leq |x-y|, \forall x,y \in R$.
- 19. Suppose that f is continous on on [a,b] and that $f(x)\geq 0$ fo all $x\in [a,b]$ and that $\int\limits_a^b f=0$. Prove that f(x)=0 for all $x\in [a,b]$.
- 20. Evaluate $\int\limits_{1}^{4} rac{\cos\sqrt{t}}{\sqrt{t}} dt$.
- 21. Let $g_n:[0,1]\to\mathbb{R}$ defined by $g_n(x)=x^n$. Show that (g_n) converges but the limit is not differentiable on [0,1].

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. (a) State and prove Location of Roots Theorem.
 - (b) Let $I\subseteq R$ be an interval and let $f:I\to R$ be increasing on I . Suppose that $c\in I$ is not an endpoint of I. Prove that the following statements are equivalent.
 - (i) f is continuous at c.

(ii)
$$\lim_{x o c-} f = f(c) = \lim_{x o c+} f$$
 .

(iii)
$$\sup\{f(x): x \in I, x < c\} = f(c) = \inf\{f(x): x \in I, x > c\}$$
 .

- 23. (a.) State and Prove L'Hospital's Rule II
 - (b.) Using this, find the following

(i.)
$$\lim_{x \to 0+} \frac{\log \sin x}{\log x}$$
 (ii.) $\lim_{x \to \infty} \frac{\log x}{x}$

- 24. (a) Suppose that $f:[a,b] \to \mathbb{R}$ and that f(x)=0, except for a finite number of ponits $c_1,c_2,\ldots c_n$ in [a,b]. Prove that $f\in \mathcal{R}[a,b]$ and $\int\limits_a^b f=0$. (b) If $g\in \mathcal{R}[a,b]$ and if f(x)=g(x) except for a finite number of ponts in [a,b], prove that $f\in \mathcal{R}[a,b]$ and that $\int\limits_a^b f=\int\limits_a^b g$.
- 25. (a) State and prove the Cauchy Criterion for Riemann integrability of a function $f:[a,b] o \mathbb{R}$.
 - (b) Check the Riemann integrability of Dirichlet function.

 $(2 \times 15 = 30)$