

Reg No :

Name :

B.Sc DEGREE (CBCS) IMPROVEMENT / REAPPEARANCE/ MERCY CHANCE EXAMINATIONS, APRIL 2025

Second Semester

Core Course - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science)

2017 Admission Onwards

EAC587D6

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Show that two tangents can be drawn from any point to a parabola.
- 2. Derive the equation of chord of contact of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 3. Prove that the sum of squares of two conjugate semi-diameters of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is a constant.
- 4. If P and D are the extremities of semi-conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that the locus of the middle point PD is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$.
- 5. Find the polar coordinates corresponding to the cartesian coordinate (-3, $\sqrt{3}$).
- 6. Find the polar equation of the conic having the axis of the conic makes an angle α with the initial line.
- 7. Prove that sin(x+y) = sinx cosy + cosx siny.
- 8. Prove that sinh(-x) = sinh x
- 9. Separate into real and imaginary parts $cos(\alpha+i\beta)$.
- 10. Find the nth derivative of e^{ax}.

- 11. Find the nth derivative of cos^3x .
- 12. Evaluate $lim_{x
 ightarrow rac{\pi}{2}}(xtanx rac{1}{2}\pi secx)$.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Tangents to an ellipse make angles θ_1 and θ_2 with the major axis. Show that the locus of their intersection, when $\cot\theta_1+\cot\theta_2=k^2$ is y^2k^2 $2xy=b^2k^2$.
- 14. Find the orthoptic locus of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 15. Prove that the locus of the pole, with respect to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, of any tangent to the auxiliary circle is $\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2}$.
- 16. Show that the locus of the poles of normal chords of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is the curve $y^2a^6 x^2b^6 = (a^2+b^2)^2x^2y^2$.
- 17. Show that the tangents at the extremities of any focal chord of a conic intersect on the corresponding directrix.
- 18. Sum the series $sin\alpha + csin(\alpha + \beta) + \frac{c^2}{2!}sin(\alpha + 2\beta) + \ldots$ where c is less than unity.
- 19. Sum the series $sinhlpha-rac{1}{2}sinh2lpha+rac{1}{3}sinh3lpha-\dots$
- 20. If $y=cos(msin^{-1}x)$, show that $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}+(m^2-n^2)y_n=0$ and hence find $y_n(0)$.
- 21. Determine $lim[rac{\pi}{2}-x]^{tanx}$ as $x o [rac{\pi}{2}-0].$

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Let P be a point of the parabola $y^2 = 4ax$. If PV is the diameter which bisects the chord QR at V, prove that $QV^2 = 4PV.SP$, where S is focus of the parabola.
- 23. Derive the equation of the tangent to the circle $r=2a\cos\theta$ at $\ lpha.$
- 24. Factorize the expression xⁿ 1

- 25. (a) Find the third differential coefficient of $e^{ax} cosbx$.
 - (b) Show that if $y=sin(sin^{-1}x)$, then $(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}+m^2y=0$. (c) If $y=[x+\sqrt{1+x^2}]^m$, show that $(1+x^2)\frac{d^2y}{dx^2}+x\frac{dy}{dx}-m^2y=0$.

(c) If
$$y=[x+\sqrt{1+x^2}]^m$$
, show that $(1+x^2)rac{d^2y}{dx^2}+xrac{dy}{dx}-m^2y=0$.

(2×15=30)