

QP CODE: 25024354

Reg No Name

:

M.Sc DEGREE (CSS) EXAMINATION, APRIL 2025

Fourth Semester

M Sc MATHEMATICS

ELECTIVE - ME800401 - DIFFERENTIAL GEOMETRY

2019 ADMISSION ONWARDS 71788665

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Find whether the vector field defined by $\mathbf{X}(x_1,x_2)=(x_1,x_2,1,0)$ where $U=\mathbb{R}^2$ is complete or not.
- 2. Define an *n*-plane. Show that *n*-plane is an *n*-surface in \mathbb{R}^{n+1} .
- 3. Describe the spherical image, when n = 2, of the cylinder $x_2^2 + x_3^2 + \ldots + x_{n+1}^2 = 1$ oriented by its unit normal vector field.
- 4. Define derivative of a smooth vector field. Let \mathbf{X} and \mathbf{Y} be smooth vector fields along the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$. Prove $(\mathbf{X} + \mathbf{Y}) = \dot{\mathbf{X}} + \dot{\mathbf{Y}}$.
- 5. Define Covariant derivative of a vector field \mathbf{X} . Show that if \mathbf{X} and \mathbf{Y} are smooth vector fields tangent to S along a parametrized curve $\alpha: I \to S$, then $(\mathbf{X} + \mathbf{Y})' = \mathbf{X}' + \mathbf{Y}'$.
- 6. Write a short note on Weingarten map. Explain its geometrical meaning.
- 7. Define curvature of a plane curve at the point p. Also write a formula for finding curvature.
- 8. Prove that any oriented plane curve which has global parametrization is connected.
- 9. Define global property. Explain with an example.
- 10. Define parametrized n-surface in $\mathbb{R}^{n+k} (k \ge 0)$. Give an example. Show that a parametrized 1-surface is simply a regular parametrized curve.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Let $f: U \to \mathbb{R}$ be a smooth function where $U \subseteq \mathbb{R}^{n+1}$ is an open set and $\alpha: I \to U$ be a parametrized curve. Show that $fo\alpha$ is a constant if and only if α is everywhere orthogonal to the gradient of f.
- 12. Let $S \subset \mathbb{R}^{n+1}$ be a connected n-surface in \mathbb{R}^{n+1} . Show that there exists on S exactly two unit normal vector fields \mathbf{N}_1 and \mathbf{N}_2 .
- 13. Show that if $\alpha: I \to S$ is a geodesic in an n-surface and if $\beta = \alpha \circ h$ is a reparametrization of α where $h: \tilde{I} \to I$ then β is a geodesic in S if and only if there exists $a, b \in \mathbb{R}$ with a > 0 such that $h(t) = at + b, \forall t \in \tilde{I}$.
- 14. For $\theta \in R$, let $\alpha_{\theta} : [0, \pi] \to S^2$ be the parametrized curve in the unit 2-sphere S^2 , from the north pole p = (0, 0, 1) to the south pole q = (0, 0, -1), defined by $\alpha_{\theta}(t) = (\cos\theta \ sint, \ sin\theta \ sint, \ cost)$. Show that, for $\mathbf{v} = (p, 1, 0, 0) \in S_p^2$, $P_{\alpha_{\theta}}(\mathbf{v}) = -(q, \cos 2\theta, \sin 2\theta, 0)$
- 15. Find the global parametrization of the plane curve, oriented by $\frac{\nabla f}{\|\nabla f\|}$ where f is the function defined by the left side of the equation $x_1^2 x_2^2 = 1, x_1 > 0$.
- 16. Let η be the 1-form on $\mathbb{R}^2-\{0\}$ defined by $\eta=-\frac{x_2}{x_1^2+x_2^2}dx_1+\frac{x_1}{x_1^2+x_2^2}dx_2$. Let C denote the ellipse $\frac{x_1^2}{a^2}+\frac{x_2^2}{b^2}=1$ oriented by its inward normal, evaluate $\int_C \eta$.
- 17. Let S be an oriented n-surface in \mathbb{R}^{n+1} let $p \in S$ and let $\{k_1(p), k_2(p), \ldots, k_n(p)\}$ be the principal curvatures of S at p with corresponding orthogonal principal curvature directions $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$. Prove that the normal curvature $k(\mathbf{v})$ in the direction $\mathbf{v} \in S_p$ is given by

$$k(\mathbf{v}) = \sum_{i=1}^n k_i(p) (\mathbf{v} \cdot \mathbf{v}_i)^2 = \sum_{i=1}^n k_i(p) cos^2 \theta_i \text{ where } \theta_i = cos^{-1} (\mathbf{v} \cdot \mathbf{v}_i) \text{ is the angle between } \mathbf{v} \text{ and } \mathbf{v}_i.$$

18. a) Define coordinate vector fields along a smooth map $\varphi: U \to \mathbb{R}^{n+k}$, where U open in \mathbb{R}^n . b) Find the coordinate vector fields along the parametrized torus φ in \mathbb{R}^3 given by $\varphi(\theta,\phi)=((a+b\cos\phi)\cos\theta,(a+b\cos\phi)\sin\theta,b\sin\phi)$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. a) Is there any relation between level sets and graph of a given function defined on $U \subseteq \mathbb{R}^{n+1}$. Explain.
 - b) Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
 - c) Obtain level sets and graph of the function $f(x_1,x_2,\ldots,x_{n+1})=x_1^2+x_2^2+\ldots+x_{n+1}^2$ for n=0,1
- 20. Given S is a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f:\mathbb{R}^{n+1}\to\mathbb{R}$ with $\nabla f(p)\neq 0$, $\forall p\in S$. Is the Gauss map from S to the unit sphere S^n onto ? Explain.

- 21. For the Weingarten map L_p , prove that $L_p(\mathbf{v})$, $\mathbf{w} = \mathbf{v}$, $L_p(\mathbf{w})$ for all \mathbf{v} , $\mathbf{w} \in S_p$.
- 22. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let \mathbf{v} be a unit vector in S_p , $p \in S$. Prove that there exists an open set $V \subset \mathbb{R}^{n+1}$ containing p such that $S \cap \mathcal{N}(\mathbf{v}) \cap V$ is a plane curve. Moreover, the curvature at p of this curve (suitably oriented) is equal to the normal curvature $k(\mathbf{v})$.

(2×5=10 weightage)