

QP CODE: 25024352

Reg No :

M.Sc DEGREE (CSS) EXAMINATION, APRIL 2025

Fourth Semester

M Sc MATHEMATICS

CORE - ME010402 - ANALYTIC NUMBER THEORY

2019 ADMISSION ONWARDS

C7449C4F

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

1. Define the identity function I(n) and prove that I * f = f * I = f, where f is any arithmetical function.

2.

Prove that if f and g are multiplicative then so is their Dirichlet product.

- 3. Define the divisor function $\sigma_{\alpha}(n)$. Show that it is multiplicative.
- 4. Prove that the following relations are logically equivalent.

(a)
$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$$
.

(b)
$$\lim_{x \to \infty} \frac{\pi(x)log\pi(x)}{x} = 1$$
.

- 5. Prove that $\forall x \geq 1, \sum_{n \leq x} \frac{\Lambda(n)}{n} = \log x + O(1)$.
- 6. State and prove cancellation law.
- 7. Give an example of a linear congruence having no solution.
- 8. Solve the congruence $5x \equiv 3 \pmod{24}$.
- 9. Define quadratic residues. Find the quadratic residues for p=11.
- 10. (a) Define the exponent of a modulo m
 - (b) Let $m \ge 1$ and (a, m) = 1. Then prove that $a^k \equiv 1 \pmod{m}$ if and only if $k \equiv 0 \pmod{m}$, where $f = exp_m(a)$.

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. If f has a continuous derivative
$$f'$$
 on the interval $[y, x]$, where $0 < y < x$, then prove that
$$\sum_{y < n \le x} f(n) = \int_y^x f(t)dt + \int_y^x (t - [t])f'(t)dt + f(x)([x] - x) - f(y)([y] - y).$$

12. If
$$h = f * g$$
, $H(x) = \sum_{n \le x} h(n)$, $F(x) = \sum_{n \le x} f(n)$, $G(x) = \sum_{n \le x} g(n)$, prove that $H(x) = \sum_{n \le x} f(n)G(\frac{x}{n}) = \sum_{n \le x} g(n)F(\frac{x}{n})$.

13. Prove that
$$\lim_{x \to \infty} \left(\frac{\psi(x)}{x} - \frac{\vartheta(x)}{x} \right) = 0$$
.

- 14. If $n \ge 1$, show that $\frac{1}{6}n\log n < P_n < 12(n\log n + n\log\frac{12}{e})$, where P_n denotes the n^{th} prime
- 15. For any prime $p \geq 5$, prove that $\sum_{k=1}^{p-1} \frac{(p-1)!}{k} \equiv 0 \pmod{p^2}$
- 16. Let f be a polynomial with integer coefficients, let $m_1, m_2, ..., m_r$ be positive integer relatively prime in pairs, and let $m = m_1 m_2 ... m_r$. Then prove that the congruence $f(x) \equiv 0 \pmod{m}$ has a solution if and only each of the congruence $f(x) \equiv 0 \pmod{m}$, i=1,,2...,r, has a solution.
- 17. Determine those odd primes p for which 3 is a quadratic nonresidue.
- 18. Let (a,m)=1 and $f=exp_m(a)$. Prove that $exp_m(a^k)=exp_m(a)$ if and only if (k,f)=1.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Prove that (a) a lattice point (a, b) is visible from the origin if and only if a and b are relatively prime. (b) If the two integers a and b are chosen at random, then the probability that they are relatively prime is $\frac{6}{\pi^2}$.
- 20. State and prove Shapiro's Taubarian Theorem.
- 21. State and prove the Chineses remainder theorem. Hence prove that the linear system of congruences $a_1x \equiv b_1(mod\ m_1), \ldots, a_rx \equiv b_r(mod\ m_r)$ has exactly one solution modulo m_1, \ldots, m_r . Assume that m_1, \ldots, m_r are positive integers, relatively prime in pairs, b_1, \ldots, b_r be arbitrary integers and a_1, \ldots, a_r satisfy $(a_k, m_k) = 1$ for $k = 1, \ldots, r$.
- 22. If p and q are distinct odd primes prove that $(p|q) = \begin{cases} -(q|p) & \text{if } p \equiv q \equiv 3 \mod 4 \\ (q|p) & \text{if otherwise} \end{cases}$

(2×5=10 weightage)