

QP CODE: 25025232

Reg No	:	***************************************
Name		Total Control Control Control

M.Sc DEGREE (CSS) EXAMINATION, MAY 2025

Second Semester

CORE - CH500204 - MOLECULAR SPECTROSCOPY

M Sc CHEMISTRY, M Sc POLYMER CHEMISTRY, M Sc ANALYTICAL CHEMISTRY, M Sc APPLIED CHEMISTRY, M Sc PHARMACEUTICAL CHEMISTRY

2019 ADMISSION ONWARDS

CFC5753B

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. What are the main factors that influence the intensity of a spectra?
- 2. Write a note on Lamp-Dip spectroscopy.
- 3. What is meant by Stark effect?
- 4. Explain combination and difference bands.
- 5. Represent the term symbol for nitrogen molecule.
- 6. What is meant by shielding and deshielding of a nucleus?
- 7. Which is the commonly used reference standard in H-NMR? Why is it preferred?
- 8. How signal to noise ratio is calculated in FT NMR spectroscopy?
- 9. Explain the applications of solid state NMR.
- 10. How many peaks will be there in the EPR spectra of Napthyl radical? Explain.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Determine the rotational energy of CO on the quantum levels J = 1 and 2, If the equilibrium nuclear distance of CO is 1.131 A^0 .
- 12. Describe the origin of rotational spectra in a Non-rigid rotator.
- 13. Briefly discuss Resonance Raman scattering and Raman flourescence.

- 14. Write a note on gas lasers and solid state lasers
- 15. Explain relaxation methods in NMR spectroscopy.
- 16. Discuss the various factors influencing the coupling constant in NMR.
- 17. Explain the spin-spin relaxation in multiple pulse FT NMR.
- 18. Write a note on isomer shift and quadrapole splitting in Mossbauer spectroscopy.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Draw and explain the Morse potential energy curve. With the help of the curve explain the origin of fundamentals, overtones and hot bands.
- 20. Explain the various transitions involved in the electronic spectra of polyatomic molecules giving emphasise to the transitions occurring in a functional group and in a bond.
- 21. Explain the pulse sequences in FT NMR with pulse width and the relaxation methods.
- 22. Briefly explain the theory and important applications of NQR spectroscopy.

(2×5=10 weightage)