

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2019

Third Semester

Faculty of Science

Branch I (A)—Mathematics

MT 03 C 13—DIFFERENTIAL GEOMETRY

(2012–2018 Admissions)

Time: Three Hours Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. How will you visualize the graph of a function $f: U \to R$, $U \subset \mathbb{R}^2$, given its level sets.
- 2. Give an example to show that the set of vectors tangent at a point p of a level set might be all of R_n^{n+1} .
- 3. Define Gauss map and sketch it for $1 \text{surface of } R^2$.
- 4. Prove that in an *n*-plane, parallel transport is path independent.
- 5. Find the curvature of $\overrightarrow{r} = (\cos 2\mu, \sin 2\mu, 2 \sin \mu)$.
- 6. Explain normal curvature and oriental *n*-surface.
- 7. Explain global property with example.
- 8. Explain: Curvature of surfaces.

 $(5 \times 1 = 5)$

Part B

Answer any **five** questions. Each question has weight 2.

- 9. Show that a connected n-surface SCRⁿ⁺¹ has exactly two smooth unit normal vector fields.
- 10. State and prove the theorem on the existence and uniqueness of integral curves. Extend it to n-surface.
- 11. Show that a geodesic can be found to pass through any given point and have a given direction on a surface. Show also that the geodesic is uniquely determined by the initial conditions.
- 12. Show that parallel transport from p to q along a piecewise smooth parametrized curve is a vector space isomorphism which preserves dot product.

Turn over

19002009

13. Find the arc length of one complete turn of the circular helix

$$r(u) = (a \cos u, a \sin u, b u) - \infty < u < \infty.$$

- 14. Establish necessary and sufficient condition for a global parametrization of an oriented plane curve.
- 15. Show that parametric equations of a surface need not be unique.
- 16. Let S be the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$, $(a, b, c \neq 0)$, oriented by its outward normal. Find the Gaussian curvature.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

- 17. Define covariant derivative of a vector \overline{X} . Establish necessary and sufficient conditions for a parametrised curve $\alpha: I \to s$ be a geodesic.
- 18. (a) Show that the set SL (3) of all 3×3 real matrices with determinant equal to 1 is an 8-surface is \mathbb{R}^9 .
 - (b) What is the tangent space to SL (3) at $p = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$?
- 19. Define Weingarten map and prove it is self adjoint.
- 20. Let C be a connected oriented plane curve and $\beta: I \to C$ be a unit speed global parametrisation of C. Prove that β is 1-1 or periodic.
- 21. (a) State and prove inverse function theorem on n-surfaces.
 - (b) Differentiate between curvature of plane curves and curvature of surfaces.
- 22. Establish the two theorems to show that surfaces and parametrised surfaces are the same.

 $(3 \times 5 = 15)$

