

QP CODE: 19002354

Reg No :

Name :

M.Sc. DEGREE (C.S.S) EXAMINATION, NOVEMBER 2019

First Semester

Faculty of Science
MATHEMATICS

Core - ME010103 - BASIC TOPOLOGY

2019 Admission Onwards 28D1DA9D

Time: 3 Hours Maximum Weight :30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Show that every metric space is Hausdorff
- 2. How will you compare two topologies on the same set using their corresponding bases?
- 3. Show that subspace of a discrete space is discrete
- 4. Let A be a subset of a topological space X. Then show that (i) $\bar{\phi} = \phi$, (ii) $\bar{\bar{A}} = \bar{A}$.
- 5. Define continuous function. Show that any function from a discrete topological space is continuous.
- **6**. Define weak topology determined by the family of functions $\{f_i: X \to Y_i / i \in I\}$.
- 7. Define weakly hereditary property .Explain with an example
- 8. Let $\mathscr C$ be a collection of connected subsets of a space X and suppose K is a connected subset of X such that $C \cap K \neq \emptyset, \forall C \in \mathscr C$. Prove that $(\cup_{C \in \mathscr C} C) \cup K$ is connected.
- 9. Show that T1 property is hereditary
- 10. Define a regular space and hence show that every indiscrete space is regular

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

11. Explain convergence of a sequence in a cofinite topological space

Page 1/2 Turn Over

- 12. Prove that any intersection of an indexed family of topologies on the same set X is again a topology on X and it is the weaker than any of the topology in the family
- 13. Prove that a function $e: X \to Y$ is an embedding if and only if it is continuous and one to one and for every open set V in X, there exist an open subset W of Y such that $e(V) = W \cap e(X)$.
- Define quotient map. Show that every open surjective map is a quotient map.
- 15. Prove that every co-countable space is Lindeloff.
- 16. Prove that the property of being a compact space is preserved under continuous functions.
- 17. Show that path connectedness is preserved under continuous onto functions
- Show that in a normal space any closed-open inclusion contains an open-closed inclusion
 (6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Show that the product topology on the n^{th} power of real line coincide with the usual topology on \mathbb{R}^n
- 20. Let X be a set and suppose for each $x \in X$, a non empty family \mathfrak{N}_x of subsets of X satisfying (i) if $U \in \mathfrak{N}_x$ then $x \in U$, (ii) for any $U, V \in \mathfrak{N}_x$ then $U \cap V \in \mathfrak{N}_x$, (iii) if $V \in \mathfrak{N}_x$ and $V \subseteq U$ then $U \in \mathfrak{N}_x$ (iv) if $U \in \mathfrak{N}_x$ then there exist $V \in \mathfrak{N}_x$ such that $V \subseteq U$ and $V \in \mathfrak{N}_y$ for all $Y \in V$. Then show that there exist a unique topology \mathfrak{T} on X such that for each $X \in X$, \mathfrak{N}_x coincides with the family of all neighborhoods of x w.r.to \mathfrak{T} .
- 21. (a)Prove that a subset of \mathbb{R} is connected if and only if it is an interval. (b)Provethat every closed and bounded interval is compact.
- 22. What are the equivalent conditions of locally connected space? Explain.

(2×5=10 weightage)

