



| Reg. No |
|---------|
| Name    |

# M.Sc. DEGREE (C.S.S.) EXAMINATION, APRIL 2019

### Fourth Semester

Faculty of Science

Branch I (A)—Mathematics

MT 04 E14—CODING THEORY

(2012 Admission onwards)

Time: Three Hours Maximum Weight: 30

#### Part A

Answer any **five** questions. Each question has weight 1.

1. What are equivalent codes? Find a generator matrix G' in standard form for a code equivalent to

the code with the generating matrix  $G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ .

- 2. Find the dual code  $C^+$  for the code  $C = \langle S \rangle$ , where  $S = \{1010, 0101, 1111\}$
- 3. If C is a self dual code with generator matrix (I|A), show that C also has (-A'|I) as a generator matrix.
- 4. Show that every monic polynomial over a field F can be expressed uniquely as a product of irreducible monic polynomials over F.
- 5. If an element g has order r, show that  $g^s = e$  iff s is a multiple of r.
- 6. If F is a field of characteristic P, show that the mapping  $\phi$  defined by  $\phi(\alpha) = \alpha^p$  is an automorphism of F.
- 7. If  $C_1$  and  $C_2$  are cyclic codes with generator polynomials  $g_1(x)$  and  $g_2(x)$ , show that  $C_1 \leq C_2$  iff  $g_2(x)$  divides  $g_1(x)$ .

Turn over





8. Define Reed-Solomon code.

Show that a Reed-Solomon code C of designed distance d has d as its actual minimum weight.

 $(5 \times 1 = 5)$ 

### Part B

Answer any **five** questions. Each question has weight 2.

- 9. If the rows of a generator matrix G for a binary [n, k] code C have weights divisible by 4 and are orthogonal to each other, show that C is self-orthogonal and all weights in C are divisible by 4.
- 10. Find a parity check matrix for the code  $C = \{0000, 1001, 0110, 1111\}$ .
- 11. Define Golay Code. Show that it is a triple error correcting code.
- 12. Define a field. Give an example of a finite field.
- 13. If f(x) is a polynomial with co-efficients in  $GF(p^v)$ , show that  $f(x^{p^v}) = (f(x))^{p^v}$ .
- 14. Show that  $GF(p^s) < GF(p^v)$  iff  $x^{p^s-1} 1$  divides  $x^{p^r-1} 1$ .
- 15. Show that C is an ideal in  $\mathbb{R}_n$ , the unique monic generator g(x) of C of smallest degree divides  $x^n 1$  and conversely if a polynomial g(x) in C divides  $x^n 1$ , then g(x) has the lowest degree in  $\langle g(x) \rangle$ .
- 16. Write the parity check matrix for a Hamming code of length 7.

 $(5 \times 2 = 10)$ 

### Part C

Answer any **three** questions. Each question has weight 5.

- 17. (a) Prove that every vector in a fixed coset has the same syndrome and vectors in different cosets have different syndromes. Also show that all possible  $q^{n-k}$  syndromes occur as syndromes of some vectors.
  - (b) Prove that the packing radius t has the following properties:—
    - (i) If C has minimum weight d, then t = [(d-1)/2].
    - (ii) t is the largest among the numbers s so that each vector of weight  $\leq s$  is a unique coset leader.





- 18. (a) Prove that if C is an [n, k, d] code, then every (n d + 1) Co-ordinate positions contain an information set. Also show that d is the largest number with this property.
  - (b) Prove that the dual of an MDS code C is again an MDS code.
- 19. (a) Using the double-error-correcting BCH code decode the received vector.

$$x = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)$$

The parity check matrix H is given by

| 1000 | 1000 |
|------|------|
| 0100 | 0001 |
| 0010 | 0011 |
| 0001 | 0101 |
| 1100 | 1111 |
| 0110 | 1000 |
| 0011 | 0001 |
| 1101 | 0011 |
| 1010 | 0101 |
| 0101 | 1111 |
| 1110 | 1000 |
| 0111 | 0001 |
| 1111 | 0011 |
| 1011 | 0101 |
| 1001 | 1111 |
|      |      |

- (b) Messages are encoded using  $C_{15}$  whose parity check matrix is given above: Determine if possible the location of the errors if w is received and syndrome WH is 11101000.
- 20. (a) Show that if a field of  $q = p^m$  elements exists, then it is unique upto isomorphism.
  - (b) Show that every finite field has a primitive element.
- 21. (a) Prove that if C is an ideal in  $\mathbb{R}_n = \frac{\mathbf{F}(x)}{\left(x^n 1\right)}$  and g(x) be the monic polynomial of smallest

degree in C, then g(x) is uniquely determined and  $C = \langle g(x) \rangle$ .

Turn over





- (b) Suppose that  $a(x) = (a_0, a_1, ..... a_{n-1})$  and  $b(x) = (b_0, b_1, ..... b_{n-1})$ . Prove that a(x)b(x) = 0 in  $\mathbb{R}_n$  iff a(x) is orthogonal to the vector  $(b_{n-1}, ...... b_0)$  and every cyclic shift of this vector.
- 22. (a) Let  $C_1$  and  $C_2$  be cyclic codes with generator polynomials  $g_1(x)$  and  $g_2(x)$  and idempotent generators  $e_1(x)$  and  $e_2(x)$ . Prove that  $C_1 \cap C_2$  has as generator polynomial l.c.m  $(g_1(x), g_2(x))$  and as idempotent generator  $e_1(x).e_2(x)$ . Also show that  $C_1 + C_2$  has as generator polynomial g.c.d.  $(g_1(x), g_2(x))$  and as idempotent generator  $e_1(x) + e_2(x) e_1(x) e_2(x)$ .
  - (b) Describe a Reed-Solomon [7, 3] code over GF (8) by giving its generator polynomial. How many errors will it correct?

 $(3 \times 5 = 15)$ 

