

19002712	

Reg. No	•••••
Name	•••••

M.Sc. DEGREE (C.S.S.) EXAMINATION, OCTOBER 2019

First Semester

Faculty of Science

AN 1C 04/AP 1C 04/CH 1C 04/PH 1C 04/POH 1C 04—CLASSICAL AND STATISTICAL THERMODYNAMICS

[Common to all Branches of Chemistry]

(2012—2018 Admissions)

Time: Three Hours Maximum Weight: 30

Section A

Answer any **ten** questions.

Each question carries a weight of 1.

- 1. Give the equation for the dependence of entropy with T and V.
- 2. What are Gibb's equation? Explain.
- 3. What do you mean by fugacity? How is it varies with temperature?
- 4. Explain the exergonic nature of ATP hydrolysis.
- 5. Explain the principle of microscopic reversibility.
- 6. What are the different ternary system formed by three liquids A, B and C? Explain with an example.
- 7. Define the terms (i) Probability; (ii) Cannonical ensemble.
- 8. What do you mean understand by thermodynamic probability? Explain with an example.
- 9. Write expressions for Bose-Einstein and Fermi Dirac distribution laws. How does Maxwell-Boltzmann's law follow from these.
- 10. What theoretical grounds are given by Einstein to explain the variation of heat capacity of solids with temperature?
- 11. Using statistical concepts rationalise Third law of thermodynamics.
- 12. Electrons would never follow Maxwell-Boltzmann statistics. Justify the statement.
- 13. Explain the effect of pressure on chemical equilibria.

 $(10 \times 1 = 10)$

Turn over

19002712

Section B

Answer **five** questions by attempting not more than three questions from each bunch.

Each question carries a weight of 2.

BUNCH 1 (SHORT ESSAY TYPE)

- 14. What are Maxwell's Relations? Using appropriate Maxwell relation and First, Second laws of thermodynamics derive two thermodynamic equation of state.
- 15. Explain biological redox reaction.
- 16. Define partition function. Derive an expression for the translational partition function of a molecule.
- 17. Discuss Bose Einstein Condensation. How does it differs from ordinary condensation?

Bunch 2 (Problem Type)

- 18. A solution is prepared by mixing 2 mole of CS_2 and 3 mole of CCl_4 at 298 K and 1 atm. Assuming ideal behaviour. Calculate Δ G, Δ S, Δ A, Δ H, Δ U and Δ V for the solution process.
- 19. For the reaction

CO (g) + SO₂ (g) \rightleftharpoons CO₂ (g) + SO₂ (g) \triangle G° = -44.72 K Cal and \triangle H° = -44.14 K Cal at 25° C calculate (a) \triangle G° at 398 K and (b) K_p at 398 K. Assume that \triangle H° remains constant over the temperature interval.

- 20. Calculate the heat capacity of Diamond at 1000 K. Its Characteristic temperature is 1860 K.
- 21. Calculate the rotational partition function of hydrogen bromide gas at 300 K. If the moment of inertia of HBr is 3.31×10^{-40} g. cm² (R = 1. 38 × 10⁻¹⁶ erg. deg⁻¹, $h = 6.626 \times 10^{-27}$ erg. sec)

 $(5 \times 2 = 10)$

Section C

Answer any **two** questions.

Each question carries a weight of 5.

- 22. Taking an example each, explain the phase behaviour of the following three component system, using:
 - (i) Solid-liquid system with compound formation.
 - (ii) Liquid-liquid system with one pair of partially miscible liquids.
- 23. Using the principle of microscopic reversibility show that the cross-coefficients are equal.
- 24. Discuss in detail the Debye modification of Einstein theory of atomic crystals. Also explain the limitation of Debye theory.
- 25. (a) Derive the distribution law as applied to fermions.
 - (b) Compare Maxwell-Boltzmann statistics with Fermi Dirac statistics.

 $(2 \times 5 = 10)$

